
THÈSE DE DOCTORAT DE
L’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

M. Andi DREBES

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse:

Dynamic optimization of data-flow task-parallel applications for
large-scale NUMA systems

soutenue le 25 juin 2015 devant le jury composé de:

M. Albert COHEN Examinateur INRIA / École Normale Supérieure
M. Benoît DUPONT DE DINECHIN Examinateur Kalray S.A.
Mme. Nathalie DRACH-TÉMAM Directeur de thèse Université Pierre et Marie Curie
Mme. Karine HEYDEMANN Encadrant de thèse Université Pierre et Marie Curie
M. Jean-François MÉHAUT Rapporteur Université Joseph Fourier / CEA
M. Raymond NAMYST Examinateur Université de Bordeaux
M. Nacho NAVARRO Rapporteur Universitat Politècnica de Catalunya /

Barcelona Supercomputing Center
M. Antoniu POP Invité The University of Manchester
M. Pierre SENS Examinateur INRIA / Université Pierre et Marie Curie
M. Marc SHAPIRO Invité INRIA / Université Pierre et Marie Curie

In loving memory of Hans and Solange.

Copyright c© Andi Drebes 2015.

Verbatim copying and distribution is permitted in any medium, provided this notice is preserved.

La copie et la distribution de copies exactes de ce document sont autorisées, mais aucune modification n’est
permise.

This page intentionally left blank.

Abstract

Within the last decade, microprocessor development reached a point at which higher clock rates
and more complex micro-architectures became less energy-efficient, such that power consumption
and energy density were pushed beyond reasonable limits. As a consequence, the industry
has shifted to more energy efficient multi-core designs, integrating multiple processing units
(cores) on a single chip. The number of cores is expected to grow exponentially and future
systems are expected to integrate thousands of processing units. In order to provide sufficient
memory bandwidth in these systems, main memory is physically distributed over multiple memory
controllers with non-uniform access to memory (NUMA).

Past research has identified programming models based on fine-grained, dependent tasks as
a key technique to unleash the parallel processing power of massively parallel general-purpose
computing architectures. However, the execution of task-paralel programs on architectures with
non-uniform memory access and the dynamic optimizations to mitigate NUMA effects have
received only little interest. In this thesis, we explore the main factors on performance and data
locality of task-parallel programs and propose a set of transparent, portable and fully automatic
on-line mapping mechanisms for tasks to cores and data to memory controllers in order to improve
data locality and performance. Placement decisions are based on information about point-to-point
data dependences, readily available in the run-time systems of modern task-parallel programming
frameworks. The experimental evaluation of these techniques is conducted on our implementation
in the run-time of the OpenStream language and a set of high-performance scientific benchmarks.
Finally, we designed and implemented Aftermath, a tool for performance analysis and debugging
of task-parallel applications and run-times.

Résumé

Au milieu des années deux mille, le développement de microprocesseurs a atteint un point à
partir duquel l’augmentation de la fréquence de fonctionnement et la complexification des micro-
architectures devenaient moins efficaces en termes de consommation d’énergie, poussant ainsi la
densité d’énergie au delà du raisonnable. Par conséquent, l’industrie a opté pour des architectures
multi-cœurs intégrant plusieurs unités de calcul sur une même puce. Les sytèmes hautes perfor-
mances d’aujourd’hui sont composés de centaines de cœurs et les systèmes futurs intègreront
des milliers d’unités de calcul. Afin de fournir une bande passante mémoire suffisante dans ces
systèmes, la mémoire vive est distribuée physiquement sur plusieurs contrôleurs mémoire avec un
accès non-uniforme à la mémoire (NUMA).

Des travaux de recherche récents ont identifié les modèles de programmation à base de tâches
dépendantes à granularité fine comme une approche clé pour exploiter la puissance de calcul des
architectures généralistes massivement parallèles. Toutefois, peu de recherches ont été conduites
sur l’optimisation dynamique des programmes parallèles à base de tâches afin de réduire l’impact
négatif sur les performances résultant de la non-uniformité des accès à la mémoire. L’objectif de
cette thèse est de déterminer les enjeux et les opportunités concernant l’exploitation efficace de
machines many-core NUMA par des applications à base de tâches et de proposer des mécanismes
efficaces, portables et entièrement automatiques pour le placement de tâches et de données, amélio-
rant la localité des accès à la mémoire ainsi que les performances. Les décisions de placement
sont basées sur l’exploitation des informations sur les dépendances entre tâches disponibles dans
les run-times de langages de programmation à base de tâches modernes. Les évaluations expéri-
mentales réalisées reposent sur notre implémentation dans le run-time du langage OpenStream et
un ensemble de benchmarks scientifiques hautes performances. Enfin, nous avons développé et
implémenté Aftermath, un outil d’analyse et de débogage de performances pour des applications
à base de tâches et leurs run-times.

Contents

1 Introduction 1
1.1 Objectives and contributions of this thesis . 2
1.2 Outline of this document . 3

2 Context and problem statement 5
2.1 Parallel programming models for many-core architectures 5

2.1.1 Task-based programming models . 6
2.1.2 The run-time system . 6

2.2 High performance parallel hardware architectures 7
2.2.1 The cache hierarchy . 8
2.2.2 Non-uniform memory access . 10
2.2.3 Efficient exploitation of many-core architectures and NUMA 11

2.3 Efficient mapping of parallelism to the hardware . 12
2.4 Related work . 13

2.4.1 Data placement . 13
2.4.2 Scheduling . 18
2.4.3 Combined scheduling and data placement 20
2.4.4 Summary . 25

2.5 Summary and problem statement . 28

3 OpenStream 31
3.1 Basic concepts . 31

3.1.1 Stream accesses using views . 32
3.1.2 Dynamic task graphs . 32

3.2 The syntax of OpenStream programs . 35
3.2.1 Declaring streams and stream references . 35
3.2.2 Declaring views . 36
3.2.3 Creating tasks . 37
3.2.4 The tick construct . 37
3.2.5 Barriers . 38

3.3 Examples . 38
3.4 Execution model . 42

3.4.1 Scheduling and work-stealing . 43
3.4.2 Data structures . 44
3.4.3 Dependence management . 45
3.4.4 Allocation of data structures . 48
3.4.5 Restrictions from the execution model . 51

3.5 Compilation of an OpenStream program . 52
3.6 Summary . 55

CONTENTS

4 A NUMA-aware run-time and execution model 57
4.1 Memory allocation and data placement by the operating system 57

4.1.1 Logical and physical memory allocation . 58
4.1.2 Page placement . 59
4.1.3 Determining the location of data . 60
4.1.4 Implications of the size of pages . 60

4.2 The influence of first-touch placement and the page size on memory pooling . . . 61
4.2.1 Page placement during refills . 61
4.2.2 Placement at the first use of data structures 63
4.2.3 Reuse of data structures . 64

4.3 Separation of frames and input buffers . 65
4.3.1 Avoiding the scattering of input data across multiple nodes 65
4.3.2 Integration into the compiler . 67

4.4 NUMA-aware memory pools . 68
4.4.1 Determining the placement of blocks . 68
4.4.2 Integration into the life cycle and per-node memory pools 72

4.5 Reducing the impact of per-node memory pools on performance 73
4.5.1 Reducing the number of system calls for logical allocation 74

4.6 Placement of persistent run-time structures . 74
4.7 Summary . 75

5 Dynamic single assignment 77
5.1 Concepts of dynamic single assignment . 77

5.1.1 Terminology . 78
5.1.2 Principles of dynamic single assignment . 78
5.1.3 Dynamic single assignment on streams . 79

5.2 Obtaining accurate information on data accesses . 80
5.3 Implementing an algorithm using dynamic single assignment 82

5.3.1 Identification of data elements, versions and appropriate partitioning . . . 82
5.3.2 Mapping of data elements to stream elements and definition of the interface

of tasks generating new versions . 83
5.3.3 Definition of auxiliary tasks needed for initialization and termination . . . 84
5.3.4 Implementation of all tasks . 85
5.3.5 Parallelization of the control program . 87

5.4 Implications of dynamic single assignment on the control program 90
5.4.1 Allocations of a sequential control program 90
5.4.2 Allocations of a parallel control program . 93
5.4.3 Estimation of the memory footprint . 93
5.4.4 The order of task creations in a parallel control program 96

5.5 Parallelizing the control program . 97
5.5.1 Rate of task creation . 98
5.5.2 Order of task creations . 99
5.5.3 Dynamic dependence patterns and termination detection 100
5.5.4 Conditions for the parallelization of the control program 100
5.5.5 Sketching deterministic parallel task creation 101

5.6 Summary . 102

6 Experimental Setup 103
6.1 Benchmarks . 103

6.1.1 Seidel . 104
6.1.2 Jacobi . 106
6.1.3 Blur-roberts . 108
6.1.4 Bitonic . 109
6.1.5 Cholesky . 112

xii

CONTENTS

6.1.6 K-means . 114
6.2 Baselines and measurement . 116

6.2.1 Synchronization using tokens . 117
6.2.2 Generic optimizations for load balancing across memory controllers 119
6.2.3 Execution phases and measurement interval 120

6.3 Hardware environment . 121
6.3.1 Opteron test platform . 121
6.3.2 SGI test platform . 121
6.3.3 Latency of memory accesses and NUMA factors 122

6.4 Parametrization and tuning of the benchmarks . 123
6.4.1 Parametrization . 123
6.4.2 Compiler flags and manual optimizations . 125

6.5 Characterization of memory accesses . 125
6.6 Scalability of NUMA-agnostic shared memory benchmarks 127
6.7 Summary . 128

7 Data-aware scheduling 133
7.1 The influence of task activation on data locality . 133

7.1.1 The locality of read accesses . 134
7.1.2 The locality of write accesses . 134
7.1.3 The influence of the task graph on task ownership 136
7.1.4 Conclusion . 137

7.2 Work-pushing . 137
7.3 Topology-aware work-stealing . 141
7.4 Experimental results . 143

7.4.1 Metrics for evaluation . 143
7.4.2 Results for work-pushing . 145
7.4.3 Results for topology-aware work-stealing . 151

7.5 Summary and conclusion . 153

8 Deferred allocation 157
8.1 Influence of the allocation mechanism on data locality 157

8.1.1 Influence of the control program . 158
8.1.2 Influence of work-stealing . 159
8.1.3 Influence of the creation of initial tasks . 160

8.2 Deferred allocation . 162
8.2.1 Principles of deferred allocation . 162
8.2.2 Modification of the run-time . 164
8.2.3 Modification of the compiler . 165
8.2.4 Deferred allocation and work-pushing . 167

8.3 Influence of deferred allocation on data locality . 167
8.3.1 Influence of the control program . 167
8.3.2 Influence of work-stealing . 169
8.3.3 Creation of initial tasks . 170
8.3.4 Reduction of the memory foot print . 170

8.4 Experimental results . 173
8.4.1 Memory footprint . 175
8.4.2 Performance . 177

8.5 Ongoing work: reduction of the memory footprint with the inout_reuse clause . . 180
8.6 Summary . 185

xiii

CONTENTS

9 Optimizing broadcasts 187
9.1 Memory footprint and execution time of broadcasts 187
9.2 Reducing the memory footprint and execution time 191
9.3 Experimental evaluation . 193

9.3.1 Changes of the data layout improving cache hit rates 193
9.3.2 Impact on the memory footprint and performance 194
9.3.3 Comparison with state-of-the-art implementations of Cholesky Factorization 195
9.3.4 Conclusion . 198

9.4 NUMA-aware broadcasts with on-demand copies 199
9.4.1 Broadcasts with on-demand copies . 200
9.4.2 Experimental evaluation . 202
9.4.3 Conclusion . 205

9.5 Summary . 205

10 Performance analysis of task-parallel programs and run-times 207
10.1 Requirements for trace-based performance analysis 208

10.1.1 Trace exploration and hypothesis testing . 208
10.1.2 Trace visualization . 209
10.1.3 Control over the amount of detail . 209
10.1.4 Recording execution traces of task-parallel applications 210

10.2 Aftermath . 211
10.2.1 Organization of the main user interface . 211
10.2.2 Trace format . 213
10.2.3 Symbol tables and annotations . 214

10.3 Debugging application performance . 214
10.3.1 Seidel: detecting contention on memory controllers 215
10.3.2 K-means clustering: branch mispredictions 216

10.4 Debugging run-time performance . 218
10.4.1 Deferred allocation and work-pushing . 218
10.4.2 Broadcast tables . 222

10.5 A perspective for the automation of performance analysis 223
10.5.1 High-level analysis based on thresholds . 223
10.5.2 Correlating performance indicators with task durations 224
10.5.3 Status of the implementation . 225

10.6 Related Work . 226
10.7 Summary and conclusions . 227

11 Conclusion and perspectives 229
11.1 Summary of the thesis . 229
11.2 Contributions . 231

11.2.1 Key contributions . 231
11.2.2 Contributions that form the theoretical and technical basis for the key contri-

butions . 232
11.2.3 Practical contributions . 233

11.3 Conclusions . 234
11.4 Future work and perspectives . 234

A Personal Publications 249

B About this document 251
B.1 Typesetting and editing . 251
B.2 Figures and graphs . 252

xiv

List of Figures

2.1 Embedding of the run-time system into the execution environment 7
2.2 Example of a hierarchy of caches with three levels L1 to L3 with separate and unified

caches . 8
2.3 Hardware prefetching between DRAM and the last level cache and between caches 8
2.4 Shared and private caches in a multi-core system . 9
2.5 Example of a NUMA system with 16 cores and 4 nodes 10
2.6 Examples of distributions using BLOCK and CYCLIC 23

3.1 Illustration of stream accesses with burst and horizon 33
3.2 Example of a dynamic task graph . 34
3.3 Simple example with a single producer and a single consumer 38
3.4 Two producers and a single consumer . 39
3.5 Six producers and a single consumer operating on the same stream 40
3.6 Six producers and a single consumer operating on six streams of an array of streams 41
3.7 Multiple consumers reading the same elements . 43
3.8 Per-worker data structures and worker placement in OpenStream 43
3.9 Major data structures of the OpenStream run-time 45
3.10 Dependence resolution . 46
3.11 Dependence resolution of broadcasts . 49
3.12 Illustration of the principles of a per-worker memory pool 50
3.13 Invalid program with bursts smaller than the horizons 51
3.14 Invalid program with multiple consumers reading from the same producer 51
3.15 Compilation of an OpenStream program . 53

4.1 Logical and physical allocation . 59
4.2 Example of the distribution of data on three NUMA nodes 60
4.3 Illustration of the terms used for memory regions managed by memory pools . . . 61
4.4 Physical allocation upon a refill of a free list . 62
4.5 Different amounts of placed data after a refill for blocks larger than a page 63
4.6 Balanced and unbalanced dependences leading to different distributions of the

pages of a frame . 64
4.7 Different relationships between output and input views with different implications

on the order of the scattering of a view . 64
4.8 Separation of input buffers from data-flow frames 66
4.9 Multiple writers of an input view with input buffers separated from data-flow frames 67
4.10 Duration of a call to move_pageswith increasing concurrency 70
4.11 Duration of a call to move_pageswith maximum concurrency and varying duration

between two calls . 70
4.12 Overhead of a call to move_pageswith maximum concurrency as a function of the

duration between two calls for a varying number of pages 70

LIST OF FIGURES

4.13 Duration of a call to move_pageson the 64-core system as a function of the number
of pages whose placement is determined with 1.5Mcycles between two calls 71

4.14 Page sampling with a sampling distance of 16 pages 71
4.15 Huge page spanning two blocks . 72
4.16 Layout in memory of a block and its metadata section 72
4.17 Refill and allocation with immediate splitting . 74
4.18 Refill and allocation with lazy splitting . 74
4.19 Influence of the placement of structures representing workers on performance . . . 75

5.1 Dependences in the dynamic single assignment version of seidel-1d 84
5.2 Parallel control program of seidel-1d . 88
5.3 Memory footprint resulting from sequential task creation with small pages 92
5.4 Memory footprint resulting from sequential task creation with huge pages 94
5.5 Memory footprint resulting from parallel task creation 95
5.6 Order of task creations in a parallel control program 95
5.7 Concurrent task creation with different matching of the views 97
5.8 Sequential control program with a different number of workers 98
5.9 Examples of task graphs for which the order of task creation has an influence on

performance . 99
5.10 Parallel control program with termination detection 100
5.11 Deadlocking and non-deadlocking parallel task creation 101

6.1 Seidel: two-dimensional five-point stencil . 105
6.2 Seidel: progress within the task graph . 105
6.3 Jacobi-2d: two-dimensional five-point stencil . 107
6.4 Jacobi-2d: progress within the task graph for a high number of workers 107
6.5 Jacobi-2d: progress within the task graph depending on the timing 107
6.6 Blur-roberts: consecutive applications of two stencils 109
6.7 Bitonic: bitonic sorting network . 110
6.8 Parallel control program of a bitonic sorting network 111
6.9 Available parallelism during execution of a bitonic sorting network 111
6.10 Bitonic: examples of progress within the task graph 111
6.11 Cholesky: Block-wise updates of the matrix . 112
6.12 Cholesky: varying number of readers depending on the operation and the block

position . 113
6.13 Cholesky: parallel control program . 113
6.14 K-means: clustering of multidimensional data . 115
6.15 1d stencil synchronizing with tokens . 117
6.16 Interleaved allocation on n nodes . 120
6.17 Phases during execution of a benchmark . 121
6.18 Architecture of the Opteron test system . 122
6.19 Architecture of the SGI test system . 122
6.20 Cache miss rates of the dynamic single assignment versions 126
6.21 Number of last level cache misses per thousand instructions 127
6.22 Scalability of shared memory benchmarks (Opteron platform with 64 cores) 129
6.23 Scalability of shared memory benchmarks (SGI platform with 192 cores) 130

7.1 A task with n producers and m consumers . 134
7.2 Remote / local memory accesses to input buffers depending on activating worker 135
7.3 Remote / local write accesses depending on the placement of output buffers 135
7.4 Different probabilities among workers for task ownership 136
7.5 Influence of task creation on the locality of read accesses 136
7.6 Updated structure of the workers with MPSC FIFO 138
7.7 Visual representation of data and task placement . 145

xvi

LIST OF FIGURES

7.8 Locality of requests to main memory on the Opteron system for the push heuristics 146
7.9 Influence of the push heuristic on seidel and jacobi 146
7.10 Timing of the determination of data placement in blur-roberts 147
7.11 Effect of the push heuristics on bitonic . 148
7.12 Approximation Rappr

loc of the locality for the push heuristics 149
7.13 Relative error ofRappr

loc over the locality measured with hardware performance counters150
7.14 Speedup of the push heuristics over default random work-stealing without work-

pushing . 152
7.15 Speedup of the push heuristics over the shared memory implementations 152
7.16 Locality of requests to main memory on the Opteron system for the push heuristics

combined with topology-aware work-stealing . 154
7.17 Relative improvement of the locality of requests to main memory on the Opteron

system for the push heuristics combined with topology-aware work-stealing . . . 154
7.18 Approximation Rappr

loc of the locality for the push heuristics combined with topology-
aware work-stealing for the SGI system . 154

7.19 Relative improvement of the approximation Rappr
loc of the locality of requests to main

memory on the SGI system for the push heuristics combined with topology-aware
work-stealing . 154

7.20 Improvement of the execution time of the push heuristics combined with topology-
aware work-stealing compared to work-pushing only 155

7.21 Speedup of the push heuristics combined with topology-aware work-stealing over
the shared memory implementations . 155

8.1 Immediate allocation of input buffers . 158
8.2 Influence of the control program on locality using immediate allocation 159
8.3 Influence of work-stealing in conjunction with immediate allocation on the locality

of write accesses . 159
8.4 Work-pushing after a steal using immediate allocation 160
8.5 Influence of the creation of initial tasks on data locality 161
8.6 Example of a task graph that requires a less obvious scheme for the creation of initial

tasks to avoid contention . 163
8.7 Example of deferred allocation of the input buffers of a task t with n producers . . 164
8.8 Immediate allocation of input buffers . 166
8.9 Decoupled control program and buffer allocation on a path of heavy dependences 168
8.10 Decoupled control program and buffer allocation on a path of heavy dependences 168
8.11 Deferred allocation on a task-graph with balanced dependences 169
8.12 Work-stealing in conjunction with deferred allocation 170
8.13 Improved data locality and load balancing resulting from the creation of initial tasks

using deferred allocation . 171
8.14 Deferred allocation compared to immediate allocation 172
8.15 Illustration of the reduced memory footprint due to deferred allocation 174
8.16 Locality of requests to main memory on the Opteron system for deferred allocation 175
8.17 Approximation Rwloc

loc (and Rappr
loc for rnd) of the locality for deferred allocation . . . 176

8.18 Relative error of Rwloc
loc (and Rappr

loc for rnd) over the locality measured with hardware
performance counters for the Opteron system . 177

8.19 Comparison of the locality of requests to main memory on the Opteron system for
work-pushing and deferred allocation . 177

8.20 Maximum resident size for dynamic single assignment implementations with and
without deferred allocation and the shared memory implementations 178

8.21 Reduction of the maximum resident size by deferred allocation compared to rnd . 178
8.22 Speedup of deferred allocation over default random work-stealing without work-

pushing . 179
8.23 Speedup of deferred allocation over the shared memory implementations 179

xvii

LIST OF FIGURES

8.24 Examples of a task graphs with tasks using the inout_reuse clause 181
8.25 Steps during execution of an application using the inout_reuse clause 182
8.26 Transfer of ownership resulting in a minimal memory footprint of dependent tasks 184
8.27 Copying the contents of an inout_reuse view when changing nodes 185

9.1 Broadcast to n readers with multiple copies . 188
9.2 Broadcast with deferred allocation . 189
9.3 Timing related to copies during a broadcast . 190
9.4 Sharing of a single input buffer in a broadcast using a broadcast table 191
9.5 Timing of a broadcast when using a broadcast table 192
9.6 Cholesky: improved layout of data in shared memory 193
9.7 Memory footprint of cholesky with and without broadcast tables 194
9.8 The number of broadcasts and readers in cholesky as a function of the size of the matrix196
9.9 Number of allocations of 512KiB-blocks from memory pools during execution of

cholesky . 196
9.10 Number of refills during execution of cholesky for blocks of 512KiB 197
9.11 Execution time of cholesky with and without broadcast tables 197
9.12 Execution time of cholesky compared to state-of-the-art implementations for many-

core systems . 199
9.13 Performance of cholesky compared to state-of-the-art implementations for many-core

systems . 199
9.14 Footprint of cholesky compared to state-of-the-art implementations for many-core

systems . 200
9.15 Broadcast table with support for multiple copies . 200
9.16 Broadcast table with node-local copies . 203
9.17 Memory footprint of broadcast tables with local copies 204
9.18 Fraction of requests to local memory of broadcast tables with local copies on the

Opteron system . 204
9.19 Number of last level cache misses per thousand instructions of cholesky using broad-

cast tables with a single copy . 204
9.20 Execution time of cholesky using broadcast tables with a single copy and local copies 205

10.1 Stages in the development of task-parallel applications and run-times 209
10.2 Capturing events related to the interactions between the application, the run-time

system and the hardware . 209
10.3 Aftermath’s main window: timeline (1), filters (2), statistics (3), information on

selected tasks / events (4) and menu bar for derived metrics (5). 212
10.4 High-latency memory accesses of seidel using a shared matrix 215
10.5 Distribution of the duration of the main computation tasks in k-means 216
10.6 Heatmap view showing the task duration of k-means 217
10.7 Distribution of the duration of the main computation tasks of the modified k-means

benchmark . 217
10.8 Heatmap view showing the task duration of the modified version of k-means with a

lower number of branch mispredictions . 218
10.9 Trace of seidel with random work-stealing and without work-pushing or deferred

allocation . 219
10.10Example of memory accesses . 221
10.11Different views for a trace of seidel with topology-aware work-stealing, work-

pushing and deferred allocation . 221
10.12Worker states for each core during execution of cholesky without and with broadcast

tables . 222
10.13Number of workers in task execution state during execution of cholesky without and

with broadcast tables . 223

xviii

LIST OF FIGURES

10.14Evolution of the values of hardware counters for branch mispredictions (cmisp) and
cycles (ccyc) on core i . 225

10.15Samples that do not exactly match the beginning and end of a task 225
10.16Task duration as a function of the number of branch mispredictions per thousand

cycles in k-means . 226

xix

LIST OF FIGURES

xx

Listings

3.1 Single producer and single producer operating on a single stream 38
3.2 Two producers and a single consumer operating on a single stream 39
3.3 Creation of producers in a for-loop . 40
3.4 Consumer using a variadic view . 41
3.5 Multiple consumers reading the same elements . 42
3.6 Example code to be translated by the compiler . 53
3.7 General lines of the code generated by the compiler 53
4.1 Multiple producers writing to the same input buffer 65
4.2 Example of a task with multiple input views . 67
4.3 General lines of the code generated by the compiler for input data embedded into a

data-flow frame . 67
4.4 General lines of the code generated by the compiler for input buffers that are

separated from the data-flow frame . 68
5.1 Illustration of the terminology for dynamic single assignment 78
5.2 Example of manual dynamic single assignment . 78
5.3 Example of manual dynamic single assignment with an irregular mapping of ver-

sions to data locations . 79
5.4 Stream indexes and addresses in the context of dynamic single assignment 79
5.5 Task-local modifications not counted as versions . 80
5.6 Sequential implementation of seidel-1d . 82
5.7 Sequential, blocked implementation of a seidel-1d . 83
5.8 Parallel, dynamic single assignment implementation of seidel-1d 85
5.9 Sketch of seidel-1d with a parallel control program 88
6.1 One-dimensional stencil using tokens for synchronization 117
8.1 Task with output dependences causing the modified compiler to add calls to pre-

pare_data to the task body . 165
8.2 General lines of the code with deferred allocation generated by the compiler 166
8.3 Example of a task with equal-sized input and output views 180
8.4 Example of a task using the inout_reuse clause . 180

LISTINGS

xxii

List of Algorithms

1 scheduler_loop(w) . 44
2 add_task_locally(t, w) . 44

3 last_dep_satisfied(w, t) . 139
4 node_with_min_cost(nodew, data) . 140
5 scheduler_loop(w) . 140
6 empty_mpsc_fifo(w) . 140
7 topology_aware_stealing(w) . 143

8 prepare_data(vo) . 165
9 prepare_data_vec(vv , num) . 165

10 prepare_peek_data(vp) . 202

LIST OF ALGORITHMS

xxiv

List of Tables

2.1 Overview of basic characteristics of approaches in related work 25
2.2 Overview of the features of data placement in related work 26
2.3 Overview of the features of scheduling in related work 27

6.1 Average latency of read and write accesses as a function of the distance for the
Opteron system . 123

6.2 Average latency of read and write accesses as a function of the distance for the SGI
system . 123

6.3 Parameters for the benchmarks . 124
6.4 Compiler flags and manual optimizations for the benchmarks 125

LIST OF TABLES

xxvi

1 Introduction

Microprocessor development from the early 1970s until the mid-2000s was characterized
by substantial increases of sequential performance with each new processor generation due to
aggressive scaling of the clock frequency and micro-architectural improvements. Towards the
mid-2000s this development reached a point at which higher clock rates and more complex micro-
architectures became less energy-efficient, such that power consumption and energy density were
pushed beyond reasonable limits. As an alternative, the industry has shifted to more energy
efficient multi-core designs, integrating multiple processing units on a single chip. [43]

To satisfy the ever-increasing need for computing power, the focus now lies on increasing the
parallel performance by integrating more cores per chip instead of developing more complex cores
with higher sequential performance. Today’s high performance computing systems range from
multi-core systems with several cores to many-core systems composed of dozens or hundreds
of general-purpose computing units. The trend to integrate more and more cores is expected to
continue and future systems are expected to integrate thousands of cores [26].

Memory accesses in these architectures are a major concern for performance for two main
reasons. First, the clock frequency of processors and DRAM have evolved at different speeds,
resulting in a drastic performance gap between these components known as the memory wall [64].
From the perspective of a core, each access to main memory potentially stalls the core for many
cycles until data eventually becomes available and can thus reduce performance considerably.
Second, the integration of a large number of cores in a parallel system puts additional stress on
the memory interface due to an increased amount of requests that can be issued per time unit.
This might lead to contention on the memory controller, further increasing the latency of memory
accesses and further decreasing performance.

To improve memory bandwidth and to avoid contention, many-core systems integrate multiple
memory controllers and group cores with memory controllers into nodes that are connected
through large-scale links. The local memory of a node can be accessed by the cores of the node
without using the interconnect and local accesses are thus fast, while accesses to remote nodes
are slow. Access to local and remote memory in such systems with non-uniform access to main
memory (NUMA) is usually managed transparently through the hardware and main memory
is accessible by software through a single, unified address space. However, to keep the latency
of memory access low and to avoid contention on specific nodes, data and computations must
be distributed across nodes using appropriate software techniques such that all accesses ideally
target local memory and such that none of the nodes is targeted by a significantly higher amount
of requests than the others.

Chapter 1: Introduction

While existing sequential applications required no or only few changes to benefit from im-
provements of sequential performance of systems with uniform memory access (UMA), the shift
to parallel architectures and non-uniform memory access for mainstream computing represents a
major challenge for software development and optimization with fundamental changes throughout
the entire software stack [13, 27]. This involves:

– the parallelization of algorithms to take advantage of the processing power of multiple cores.
– the design of parallel programming models that allow to denote parallelism and whose

execution models define how a parallel program is executed.
– the design of compilers that translate the specification of a parallel program to code that is

executable on a parallel target architecture.
– the development of low-overhead execution environments that implement the execution

models of parallel programming models.
– the development of efficient system software providing fine-grained control over the assign-

ment of computations to cores and of data to nodes.

Due to the wide variety of available parallel hardware architectures and short release cycles of
systems with higher core counts, parallel applications are expected to be portable across multiple
systems and to be able to yield shorter execution times with each additional core. As parallel
software is usually significantly more complex than sequential software, parallel programming
models must provide means to improve the productivity and to reduce the implementation
overhead related to parallelism.

Task-parallel programming models [22, 25, 70, 72, 36, 54, 33, 35, 28] are a recent trend to respond
to these challenges. A key feature of these models is to abstract from details of the underlying
architecture and system software and to reduce the specification of a parallel program to the defi-
nition of fine-grained tasks and dependences between them. While this concept greatly improves
the productivity of the programmer, it leaves issues related to efficient interaction with system
software, efficient exploitation of the hardware and performance portability to the implementation
of the execution model. On many-core NUMA systems, this includes the optimization of memory
accesses, i.e., keeping accesses to main memory local and distributing requests equally to all nodes.
Providing efficient mechanisms for the placement of tasks on cores and the placement of data on
nodes is indispensable for the implementation of task-parallel programming models of many-core
systems in order to achieve high performance.

1.1 Objectives and contributions of this thesis
Past research has lead to a wide variety of approaches for optimized placement of computations

and data on NUMA systems, ranging from static optimizations by the compiler to dynamic
solutions operating at execution time. However, only little work has been done for task-parallel
applications and run-times managing their execution.

The purpose of this thesis is to explore the challenges and opportunities regarding the efficient
exploitation of many-core NUMA systems by task-parallel applications with a focus on accesses
to main memory and to propose mechanisms for efficient task and data placement. The first
major challenge in the development of such mechanisms is to identify and analyze the interactions
between the application, the run-time, the hardware and the operating system that are relevant
for data locality and performance of task-parallel programs. The second major challenge is to
design mechanisms that are portable, fully-automatic, application-transparent and able to react to
dynamic changes of the application. From this perspective, the thesis focuses on the identification
and detailed analysis of:

1. characteristics of the run-time systems that are needed to support low-overhead implementa-
tions of mechanisms for task and data placement and to prevent the run-time system itself
from becoming a bottleneck for performance.

2. characteristics of task-parallel programs that are relevant for data locality and performance
and that have to be taken into account for the design of mechanisms for data and task

2

Chapter 1: Introduction

placement.

Based on the findings of this analysis we developed multiple automatic on-line techniques for
efficient and portable data and task placement exploiting information on point-to-point data
dependences readily available in modern task-parallel run-time systems at execution time.

The implementation of these mechanisms and their experimental evaluation led to several
practical contributions. First, we developed a NUMA-aware run-time based on OpenStream, a
state-of-the-art framework for task-parallel applications, that serves as the basis for our mechanisms
for task and data placement. Second, we implemented these mechanisms and integrated them
into the NUMA-aware run-time. To validate that our concepts apply to real-world task-parallel
applications, we have implemented of a set of high performance, scientific OpenStream benchmarks
and executed them using our run-time. Finally, we designed and implemented Aftermath, a tool
for performance analysis and debugging of task-parallel applications and run-times. This allowed
us to understand the interactions between the task-parallel application, the run-time system, the
hardware and the operating system and to take these into account for the theoretical concepts for
task and data placement.

1.2 Outline of this document
The outline of this thesis is the following. Chapter 2 presents the context of this thesis. The

chapter provides a motivation for task-parallel languages as a programming model for many-
core systems and defines the goals for efficient exploitation of the hardware through optimized
mappings of computation to cores and data to memory controllers by a run-time system. A
presentation of related work forms the basis of the problem statement provided at the end of the
chapter.

Chapter 3 presents OpenStream, a data-flow extension for OpenMP that enables task parallel
programming and that we have chosen for the implementation of the concepts proposed in this
thesis. We present the syntax of OpenStream, its execution model and provide an outline for the
compilation of OpenStream applications.

Chapter 4 focuses on the requirements for run-time systems to support efficient task and data
placement on many-core NUMA systems. The chapter shows how memory is typically placed
on nodes by the operating system and investigates the influence of this strategy on the locality
of memory accesses in OpenStream programs. Based on these findings, we propose methods for
low-overhead, NUMA-aware memory allocation and the determination of memory placement.

Chapter 5 introduces dynamic single assignment, a programming style that allows the run-time
system to reliably and accurately determine the data that is accessed by a task before the task is
executed. We point out the implications of this programming style on the memory footprint related
to task creation and conclude that parallel task creation is beneficial for the memory footprint as
well as for performance.

The experimental setup for the validation of the concepts presented in this thesis is given
in Chapter 6. This includes a detailed description and characterization of all benchmarks, a
description of baselines to which we compare our optimizations, the definition of the methodology
for measurements and a description of the architectures of our test systems.

Chapter 7 presents our solutions for NUMA-aware task placement. We propose work-pushing,
a technique that transfers tasks to cores associated to nodes that contain the memory regions
accessed by the tasks and topology-aware work-stealing, a mechanism that steals tasks from an
incrementally widening neighborhood of a core with respect to the memory hierarchy.

Efficient data placement is addressed in Chapter 8 presenting deferred allocation. In this
technique, the allocation of the memory regions that receive the input data of a task is delayed
from task creation to the moment when the set of tasks writing to the memory regions as well as
the nodes on which these tasks execute are known. As in Chapter 7, we analyze the impact of this
strategy on data locality and performance.

Chapter 9 treats our optimizations for broadcasts, passing the data of a single producer is to
multiple consumers. We present broadcast tables and show that this optimization considerably

3

Chapter 1: Introduction

reduces the memory footprint and significantly increases performance of a broadcast-intensive
linear algebra kernel.

Chapter 10 covers Aftermath, a tool for the visualization and analysis of execution traces that we
have originally developed for performance debugging of our optimizations and the benchmarks
presented in Chapter 6, but whose concepts can be applied to performance analysis of task-parallel
applications and run-times in general.

The conclusions on the work presented in this thesis and directions for future research are
given in Chapter 11.

4

2 Context and problem statement

In this chapter, we introduce the scientific and technical context of this thesis. In Section 2.1, we
first explain why the advent of massively parallel general-purpose architectures in mainstream
computing has raised the need for alternative programming models. We present the expectations on
these models and introduce task-parallel programming as an approach that addresses these issues.
The aspects of task-parallel programs that are critical for performance are covered subsequently.
Section 2.2 provides an overview of the architecture of high performance many-core systems and
emphasizes the prerequisites for their efficient exploitation. The focus of this presentation lies
on the efficient use of the memory architecture. Section 2.3 discusses how this problem can be
tackled through proper orchestration at execution time. After a presentation of solutions proposed
in related work in Section 2.4, we define the objectives of this thesis and how our solutions differ
from existing approaches in Section 2.5.

2.1 Parallel programming models for many-core architectures

As parallel architectures have become omnipresent from embedded systems through desktop
computers to systems dedicated to high performance computing, development of parallel software
has become an imperative to exploit the processing power of contemporary systems. The wide
variety of available parallel architectures and short periods between releases of new systems with
increased core counts have lead to a shift of the expectations on programming models for parallel
systems. Modern programming models are expected to enable development of applications that are
able exploit the parallel processing power of a machine efficiently, that yield similar performance
across machines with similar characteristics and that can take full advantage of an increasing
number of processing units. To compensate the additional complexity of the development of
parallel software compared to sequential implementations, more productive approaches that
abstract from technical aspects of the implementation are needed, such that programmers can
concentrate on the specification of parallelism. These key requirements can be summarized as
scalability 1, performance portability and productivity.

1. There are many definitions for scalability and often the term is only defined intuitively [52]. The definition used in
this thesis is that an application is scalable if its speedup over sequential execution is approximately linear wrt. the number
of processing units used for execution on the same machine.

Chapter 2: Context and problem statement

2.1.1 Task-based programming models

Task-parallel programming is an increasingly popular approach to address the issues above.
Many different approaches for task-parallel programming have been proposed, ranging from
generic concepts for task-parallel computations (e.g., CONCURRENT COLLECTIONS [33]), through
general-purpose libraries (e.g., THREADING BUILDING BLOCKS [54]), language extensions (e.g.,
CILK [22, 49], OpenMP [23, 25], STARSS [70], OPENSTREAM [72, 74], X10 [36] and HABANERO [35],
LIBKOMP [28]) to specialized libraries for specific domains (PLASMA [60] based on QUARK [85]).
The key aspect of task-parallel programming models is to expose large amounts of parallelism by
creating small units of work, called tasks, and to specify interactions between tasks that constrain
which tasks can run in parallel. How tasks are declared and which methods of synchronization
are available varies between the approaches for task-parallel programming. The complete set
of tasks and the synchronization between tasks representing the parallel computation do not
necessarily have to be constituted statically. New tasks can be created and synchronization be
defined dynamically and incrementally at execution time. These requests for task creation and
synchronization are handled by a run-time system, or run-time for short, whose purpose is to manage
the execution of the task-parallel program.

Productivity in task-based programming is addressed by omitting technical details in the
specification of a program and by focusing on the definition of tasks and their interactions. Code
of task-parallel programs specifies what can execute in parallel, but leaves the choice of where
and when to execute tasks to the run-time. This abstraction lifts the obligation to provide code
for a particular kind of machine or a particular operating system and allows the programmer to
concentrate on issues that are inherent to the algorithm that is being implemented.

Scalability is addressed by encouraging the specification of very fine-grained tasks with fine-
grained inter-task synchronization, which increases parallelism and enables exploitation of a large
number of processing units simultaneously. However, fine-grained parallelism is only a necessary
condition for scalability. To unleash the parallel processing power of a machine, it is also necessary
that hardware resources are exploited efficiently and that the interface of the operating system is
used appropriately. This is the responsibility of the run-time system, which maps parallelism to
the machine and which acts as a mediator between the application and the operating system.

Similar to scalability, performance portability is addressed both in the programming model
and the specific implementation of the run-time. By leaving out platform-specific code in the
specification of a program, the same code can be used to obtain specialized versions for execution
on different platforms. The run-time is responsible to adapt the execution of the application to the
specificities of the target platform, which does not only involve preservation of correct execution,
but also efficient exploitation. This can be achieved through appropriate parameterization of
the run-time or by providing platform-specific implementations with a well-defined, platform-
independent interface between the application and the run-time.

2.1.2 The run-time system

The run-time system is the central component of task-parallel programming and is responsible
for correct and efficient execution of the task-parallel application. Figure 2.1 shows the embedding
of the run-time system into the execution environment. The services of the run-time system,
e.g., task creation and synchronization, are directly invoked by the application. In many cases,
the run-time is provided as a run-time library that the application is linked against dynamically
and requests consist in ordinary calls to library functions. The infrastructure of the run-time
system satisfying the requests is in turn based on the services provided by the operating system.
This interaction is rarely direct and commonly based on system libraries with more convenient
interfaces for system calls. The operating system forms the bottom of the software stack and finally
provides access to the hardware.

The functionality provided by the run-time system can be grouped into multiple components.
The exact set of components and the separation of components depend on the specific programming

6

Chapter 2: Context and problem statement

Task-parallel application

Run-time system
Task

management
Synchroni-

zation
Memory

allocation

Operating System

System libraries

Scheduler

Hardware

Figure 2.1: Embedding of the run-time system into the execution environment

model and its implementation. Generally, the run-time manages the creation and destruction of
tasks, implements task synchronization, detects when a task becomes ready for execution and
contains a scheduler that distributes ready task to the different cores of the machine. In cases where
the run-time also manages memory of the application, a memory allocator is part of the run-time
as well. The performance of a task-parallel application highly depends on the implementation of
the run-time components:

– First, algorithms and data structures of the run-time itself should not become a bottleneck for
performance. For instance, the computational complexity of algorithms for task management
and dependence tracking should be sufficiently low to handle large amounts of tasks, the
memory footprint of internal data structures should be small and data exchanges between
concurrent activities of the run-time should be efficient. Decentralized algorithms should be
preferred to prevent centralized components from becoming a bottleneck.

– Second, the run-time must interact efficiently with its environment. For example, slow system
calls should be avoided or at least not be invoked frequently and the run-time should use
appropriate methods for synchronization provided by the system libraries.

– Third, the execution of tasks should be orchestrated, such that hardware resources are used
efficiently, resulting in the lowest possible time for execution of the application. This aspect
is particularly platform-specific and requires detailed knowledge of the target architecture.

The next section presents the hardware architecture of contemporary high performance systems
targeted in this thesis. Its purpose is to emphasize which aspects are relevant to performance and
to point out the low-level characteristics of efficient executions of applications. Section 2.3 then
discusses how this behavior can be achieved by the run-time.

2.2 High performance parallel hardware architectures
Modern high performance hardware architectures are multi-core and many-core systems,

which integrate multiple processing units on the same chip and combine multiple chips to provide
large amounts of parallel processing power. As energy efficiency has become the driving factor
in the development of multi-core and many-core systems, the architecture of individual cores
tends to be less complex than for high performance single-core architectures [43]. However,
sequential performance still plays an important role [53] and, as a consequence, recent general-
purpose parallel architectures inherit many optimizations from single-core architectures. In the
context of this thesis, we focus on systems designed for high performance computing with less
strict constraints on energy consumption and thus less drastic trade-offs between sequential
performance of each individual core and the number of cores. Besides basic micro-architectural
optimizations, e.g., pipelining, the use of caches and basic SIMD instructions, these systems
also employ more aggressive techniques, such as out-of-order and superscalar execution, branch
prediction, speculative execution and hardware prefetching.

Particular attention, both in single-core systems as well as parallel architectures, is paid to

7

Chapter 2: Context and problem statement

L2

L3

RAM

L1D L1I

CPU

Figure 2.2: Example of a hierarchy of caches
with three levels L1 to L3 with separate and uni-
fied caches

L2

L3

RAM

L1D L1I

CPU

Prefetch

Prefetch

Figure 2.3: Hardware prefetching between
DRAM and the last level cache and between
caches

architectural improvements that reduce the impact of memory accesses on performance. As
this thesis focuses on the analysis and mitigation of bottlenecks related to memory accesses, the
following presentation of the hardware architecture of many-core systems spotlights the memory
subsystem.

2.2.1 The cache hierarchy

During the past decades, technology for processors and DRAM have evolved at different
speeds, leading to a dramatic gap between the computational performance and the main memory
access time referred to as the memory wall [64]. While computations involving only the register
file of the processor can be carried out fast, accesses to main memory limit performance as the
processor stalls for many cycles waiting for data from DRAM before execution can be resumed.
Hence, the reduction of the impact of memory accesses on performance is a major concern in
computer architecture as well as in the software industry.

Cache hierarchies of single-core systems

To mitigate the impact of high-latency memory accesses, processors have been provided with
small and fast on-chip cache memory, which enables exploitation of temporal and spatial locality of
memory accesses. Temporal locality refers to the reuse of previously requested data and can be
exploited by keeping data in the cache that has already been fetched from main memory. Spatial
locality designates the use of data at addresses close to previously requested data and can be
exploited by bringing data from neighboring addresses to the cache.

Requests to data that is already present in a cache result in cache hits and those to data that
must be fetched from main memory are referred to as cache misses. On the one hand it is desirable
that cache capacity is as high as possible in order to maximize the amount of data that can be held
simultaneously in the cache. On the other hand, the latency of accesses to a cache increases with its
size, such that smaller caches are faster than bigger caches. Dimensioning the cache thus involves
a trade-off between the size and the average latency of accesses to the cache. Modern systems
therefore rely on a hierarchy of caches with multiple levels, where caches at the upper levels, placed
near a processing unit (e.g., first-level caches), are small and fast and caches at the lower levels
farther away (e.g., third-level caches) are bigger, but also slower. Hence, the cost of a cache miss in
a cache near the CPU is still higher than the cost associated to a hit, but if the request results in a hit
in one of the caches at lower levels the cost is lower than an access to main memory. Typically, high
performance systems employ three levels of caches with first-level caches of tens of KiB, accessible
within only a few processor clock cycles and last level caches of a few MiB that can be accessed in
tens of cycles.

As both data and instructions are stored in main memory, the latency of DRAM impacts
both data accesses and the transfer of instructions to the CPU. Hence, the use of caches can not
only improve latency of accesses to data, but can also speed up instruction fetching. Unified
caches store instructions and data jointly and serve requests for the two types equally without

8

Chapter 2: Context and problem statement

L2

L1 L1 L1 L1

L2

L3

RAM

Figure 2.4: Shared and private caches in a multi-core system

differentiation. In contrast to this, in designs with separate caches, data and instructions are stored
in distinct caches, namely the data cache and the instruction cache. These separate caches can operate
in parallel and are smaller and thus faster than a unified cache. Hence, requests for data and
instructions can be satisfied simultaneously, which increases performance for pipelined execution
of instructions. However, the use of separate caches represents a static partitioning and can result
in under-utilization of the cache capacity. Unused capacity of the instruction cache could be needed
by the data cache and vice versa, but remains inaccessible due to the separation of instructions
and data. Hence, most commonly, only the level closest to the CPU uses separate caches while the
remaining levels are composed of unified caches. Figure 2.2 shows an example of a hierarchy of
caches with three levels L1 to L3. The first level cache is separated into an instruction cache (L1I)
and a data cache (L1D). The second and the third level cache are both unified caches.

Requests for data elements that have neither been referenced before nor stored at neighboring
addresses of previously requested data result in cache misses, independently from the size of
caches and the depth of the hierarchy. A hardware technique that aims at reducing the number of
these compulsory cache misses is hardware prefetching. In this optimization, the history of previously
accessed addresses is analyzed in order to predict which addresses will be accessed in the future.
The data at these addresses is brought from main memory to a cache speculatively in the hope that
the prediction is correct and that the data will actually be referenced. As prefetching can be done
in parallel with the execution of instructions, the delay of the instruction that first accesses this
data can be reduced or hidden entirely if prefetching finishes in time. Prefetching is also employed
between caches to reduce the number of compulsory misses at upper levels of the cache hierarchy.
Figure 2.3 illustrates hardware prefetching between DRAM and the last level cache as well as
between the last level cache and the second level cache of the memory hierarchy from Figure 2.2.

Cache hierarchies for architectures with multiple cores

Cache hierarchies of systems with multiple cores are slightly more complex than those of single-
core architectures. An important decision that must be taken for the design of such a hierarchy
is whether a cache is shared among multiple cores or whether it is private. The advantage of a
private cache is that its capacity is dedicated to the associated core and cannot be polluted with data
from another core. Moreover, the absence of concurrent accesses reduces the complexity of the
interface and reduces contention, increasing cache performance. Shared caches, however, enable
low-overhead communication between cores, as data can directly be exchanged within the cache.
Furthermore, data that is accessed by multiple cores must only be stored once, which reduces
the total amount of required cache memory. As the impact on performance of cache sharing is
application-specific [87] and as general-purpose architectures must yield acceptable performance
for a wide variety of applications, they cannot opt for one extreme and thus employ both private
and shared caches. As a rule of thumb, private caches are employed at the upper levels of the
cache hierarchy near the core (e.g., first and second level caches) and shared caches are used for
the lower levels of the hierarchy (e.g., the third level cache).

An important issue regarding the cache hierarchy of parallel systems is related to cache coherency.
With private caches, or, more generally speaking, with caches which are not shared by all cores,
data can be present in multiple caches at once. In order to provide a consistent view on memory for
all cores, modification of shared data must result in invalidation or update of its copies. Systems
that provide this coherence transparently are referred to as cache coherent architectures.

9

Chapter 2: Context and problem statement

Node 0

Cache

I/O

RAM

Node 1

Cache

I/O

RAM

Node 2

Cache

I/O

RAM

Node 3

Cache

I/O

RAM

Figure 2.5: Example of a NUMA system with 16 cores and 4 nodes

Figure 2.4 shows an example of a hierarchy of caches for a multi-core system composed of four
cores. The first level caches are private, second level caches are shared by pairs of cores and the
third level cache is shared by all cores.

2.2.2 Non-uniform memory access

Although caches and prefetching greatly improve performance if exploited efficiently, not all
accesses to main memory can be eliminated and improvement of DRAM access latency remains a
major concern for performance. Parallel architectures exacerbate this difficulty, as each additional
core potentially increases the total number of requests to main memory per time unit and thus
increases pressure on the memory controller. Once the bandwidth of the controller is saturated,
latency of accesses to DRAM increases and memory accesses rapidly become a bottleneck for
performance. Therefore, high performance general-purpose parallel architectures contain multiple
memory controllers which are physically distributed over the machine. This allows the hardware
to satisfy memory accesses in parallel and overall bandwidth is increased.

Cores, caches and memory controllers in these systems are grouped into nodes connected
through large-scale links. The interconnection formed by the links can contain direct connections
as well as indirect connections between nodes. For indirect connections, data cannot be exchanged
directly and must traverse one or more intermediate nodes on the way from the source to the
destination. The distance between a core and the targeted memory for such a transfer is expressed
in hops, representing the number of links on the shortest path between the core and the controller.

Accesses from cores to memory of the same node are referred to as local memory accesses and
accesses to the memory of different nodes are called remote memory accesses. Local memory accesses
can be handled without engaging the interconnect and can thus be carried out rapidly. Accesses to
remote nodes require the use of the interconnect and are thus slower, with an increasing latency for
each additional hop. As the latency of a memory access depends on the location of the requesting
core and the distance to the targeted memory controller, these systems are referred to as systems
with non-uniform memory access (NUMA). Non-uniform memory access in addition with cache
coherence is abbreviated as ccNUMA (cache-coherent NUMA systems). As we are targeting only
architectures with cache coherency, we use the terms NUMA and ccNUMA interchangeably in the
rest of this thesis.

Figure 2.5 shows a sample architecture with 16 cores and four memory controllers grouped
into four nodes. For cores P0 to P3 the memory of Node 0 can be reached at a distance of 0 hops
and thus represents the local memory. The direct neighbors, Node 1 and 2, are at a distance of one
hop. Node 3 can only be reached by passing through Node 1 or Node 2 first, its distance relative to
Node 0 is thus two hops.

Despite the physical distribution of memory controllers across multiple nodes with non-uniform
access, NUMA systems provide a uniform addressing scheme that provides access to the entire
memory of the system using a single address space. The translation from addresses to nodes and
routing within the interconnect is managed by the hardware and the physical distribution remains
essentially hidden to programs executing on the machine. However, modern operating systems
explicitly support NUMA and provide interfaces that allow application to allocate memory on
specific nodes or to obtain information on data placement.

10

Chapter 2: Context and problem statement

The efficient use of high performance parallel hardware architectures requires that cores, caches
and non-uniform memory access are taken into account. The next section defines the goals for
efficient exploitation from a software perspective.

2.2.3 Efficient exploitation of many-core architectures and NUMA

Efficient exploitation of the hardware consists in minimizing execution time through appropri-
ate low-level behavior at the micro-architectural level. Due to the complexity of the architecture of
many-core NUMA systems, this is a difficult task involving many aspects of the execution of a
program. The main directions of efficient exploitation are the following:

– Maximizing parallelism
Leveraging the parallel processing power of the machine requires that computations are
distributed to as many cores as possible. Ideally, all of the cores can be used simultaneously
throughout the entire execution time with minimal overhead for communication resulting
from the distribution.

– Maximizing sequential performance on each core
Sequential execution on each individual core should be as fast as possible. This involves
maximizing instruction level parallelism for superscalar architectures, the use of SIMD in-
structions to perform computations simultaneously on multiple ALUs and optimizations
for the instruction pipeline. Memory accesses should be avoided through the efficient use of
registers.

– Efficient use of caches
To keep the impact of memory accesses on performance as low as possible, the cache hit rate
should be as high as possible. Spatial and temporal locality should be maximized through
appropriate layout of data elements in memory and appropriate order of memory accesses.
Data that is accessed frequently should fit into the hierarchy of caches in order to avoid
conflicts and thus eviction of critical data due to limited cache capacity. The pattern of
memory accesses should be sufficiently regular to be captured by the prefetchers, such that
the number compulsory misses can be kept as low as possible.

– Minimizing the latency of accesses to main memory
The latency of memory accesses depends on the contention of memory controllers as well
as the distance between the requesting cores and the controllers satisfying the requests. To
minimize contention, it is important to distribute memory accesses over all of the nodes
of the machine. To minimize the average distance of memory accesses, the ratio of local
memory accesses to the total number of accesses should be as high as possible.

Depending on the characteristics of the application, the importance of each of the directions for
efficient exploitation above varies. For example, the performance of an application with frequent
accesses to memory might be more sensitive to an improvement of the cache hit rate than to an
increase of the number of exploited cores, while the performance of a compute-bound application
is mostly determined by the number of cores and maximization of sequential performance on
each core and may remain insensitive to improvement of the cache hit rate. Each of the directions
represents a major challenge on its own with large configuration spaces and complex relationships.

In addition, overall performance generally relies on multiple optimizations belonging to
different directions. As improvements in one direction can constrain the configuration space
in other directions, it is usually impossible to consider each direction separately and to simply
combine the optimizations. Furthermore, optimizations can be applied at different software layers
and different stages. For example, partitioning of data for caches can be done manually by the
programmer, by the compiler or dynamically at execution time. Each of these solutions has its
limitations, advantages and drawbacks. For optimal performance, different aspects must therefore

11

Chapter 2: Context and problem statement

be considered jointly throughout the whole process from the implementation to execution of an
application.

However, each direction for the improvement of application performance represents an entire
field of research on its own and exhaustive exploration of all possible combinations is infeasible.
In this thesis, we concentrate on the aspects of non-uniform memory access in the context of the
execution of task-parallel programs. Other directions for improvement are not directly addressed
by our approaches, but were taken into account during development and parametrization of the
applications for experimental evaluation.

One possibility to avoid node contention and to improve the locality of memory accesses of task-
parallel programs is to address NUMA-related issues through efficient mapping of parallelism to
the machine, i.e., the efficient mapping of computations to cores and of data to memory controllers.
In the next section, we discuss the principles of this approach and motivate which software
components are commonly involved in this process.

2.3 Efficient mapping of parallelism to the hardware
The mapping of parallelism to the hardware consists of two parts: the mapping of computations

to cores and the mapping of data to memory controllers. The definition for an efficient mapping in
this thesis is a mapping that keeps the wall clock execution time of an application as low as possible.
To this end, both the mapping to cores and to memory controllers must exploit the hardware
efficiently by inducing the low-level behavior described in the previous section. For the mapping
of computations to cores this means that ideally, all cores of the system are used simultaneously
and that each core is used efficiently with maximal sequential performance. The mapping of data
to nodes should minimize the latency of memory accesses by avoiding contention on memory
controllers and by keeping the distance between cores and the targeted nodes low. Ideally, all
memory accesses are local and requests are distributed equally over all memory controllers.

In some cases, these goals can be achieved simultaneously. For example, computations that
do not share any data can execute concurrently on cores of different nodes and the data that is
accessed by each computation can be mapped to the same node as the computation. However, in
many cases, the goals are difficult or even impossible to achieve at the same time. As an example,
consider a data buffer that is accessed by multiple concurrent computations. One possible mapping
of the data is to place the buffer on a single node. If all the computations accessing the buffer are
mapped to cores of the same node, all memory accesses target local memory, but the computing
resources of the machine are under-utilized as the cores of the remaining nodes are not used at all.
If the computations are spread on cores of multiple nodes, the parallel processing power of the
machine is well exploited, but a significant part of the accesses to memory target a remote node. In
addition, contention of the node that contains the buffer is high as it has to deal with concurrent
accesses from multiple cores. The last possibility for a mapping is to distribute the buffer over
multiple nodes and to spread computations over the entire machine. This mitigates the contention
problem, but most of the memory accesses still target remote nodes. An efficient mapping is thus
often a trade-off between optimizations for data locality, contention and parallel execution.

Whether a trade-off is necessary and which trade-off is required heavily depends on the
behavior of the application. To determine where to carry out computations and where to place data,
it is crucial to determine which computations have to be mapped, which data has to be placed and,
most importantly, how data is accessed. For this purpose, program behavior must be detected
and predicted adequately. More detailed information on application behavior and more precise
prediction allow for more efficient mapping strategies and better performance.

Two common approaches to implement dynamic mappings of computations to cores and
dynamic mappings of data to nodes consist in providing appropriate algorithms for scheduling
memory allocation. For efficient exploitation of the hardware, the scheduler must be modified
to take into account the topology of the hardware, the behavior of the application at execution
time, which data is accessed and the data placement at the moment when a scheduling decision
is taken or a combination of these aspects. Efficient memory allocation must take into account

12

Chapter 2: Context and problem statement

the topology of the hardware, the execution locations of threads or tasks, or both characteristics
to place data accordingly. The placement of data can be carried out either synchronously upon
allocation of new memory or dynamically through data migration during execution. By combining
scheduling and memory allocation, the mapping of computations and data can be addressed at
the same time, avoiding that each approach only reacts passively to the other. For example, the
scheduler can advise the memory allocator to place data on certain nodes on which computations
will be scheduled in the future. Similarly, the memory allocator can provide hints about future data
placement and advise the scheduler for future mappings of computation. The range of possible
mappings is thereby extended and bottlenecks that arise from insufficient communication between
the scheduler and the memory allocator can be avoided. As the determination of an optimal
solution for a mapping is generally considered to be computationally intensive and thus ill-suited
for on-line techniques, the algorithms used for scheduling and allocation are usually based on
heuristics.

2.4 Related work
Past research has led to a multitude of approaches for efficient exploitation of parallel archi-

tectures based on scheduling and data allocation. The main characteristics of these approaches
are:

– The set of heuristics (scheduling only, data placement only or scheduling and data placement).
– The layer of the software stack at which the approach is implemented (e.g., the operating

system, the run-time system, the compiler, the application or a combination of these layers).
– Which information is used by the approach and how this information is obtained (e.g., hints

by the application that on data placement, data affinities obtained through profiling, affinities
derived from the structure of computations and data accesses in specific types of algorithms).

– To which programming model or framework the approach applies (e.g., independent pro-
cesses, OpenMP or Cilk).

– The characteristics of the applications targeted by the approach (e.g., loop-level parallelism
or algorithms that operate on arrays).

To our knowledge, only few approaches are specific to task-parallel applications executing on
many-core NUMA systems. In this section, we present a set of related approaches relevant in the
context of this thesis, covering the characteristics above. The presentation groups the approaches
by the type of mapping, i.e., data placement and scheduling.

2.4.1 Data placement

The presentation of approaches for data placement below starts with a simple on-line page
migration technique called AFFINITY-ON-NEXT-TOUCH that can be implemented in user space or by
the operating system. We then introduce CARREFOUR, a more sophisticated kernel-space approach,
which focuses on the avoidance of node contention through decisions for page migration, page
replication and interleaving based on statistics gathered with hardware performance counters.
An application-level approach for manual improvement is provided by MAI. The approach is
used by the MINAS framework, which instruments the source code of an application to benefit
from placement strategies from MAI automatically. The presentation finishes with two trace-based
approaches. The first is based on full-system simulation and uses MINAS for data placement. The
second approach performs off-line profiling using hardware performance counters and places data
accordingly at execution time.

Affinity-on-next-touch

Many operating systems use first-touch placement as the default placement strategy, in which
a page of physical memory is allocated on the node associated to the core that first writes to the
page (a detailed discussion of data placement by the operating system will be given Section 4.1). If
the cores that initialize data structures and those that access them are located on the same node,

13

Chapter 2: Context and problem statement

first-touch placement yields high locality of memory accesses. However, if the initializing nodes and
the accessing nodes do not match, this strategy may lead to high contention and a high fraction
of remote memory accesses. A common strategy to circumvent this problem is to migrate pages
dynamically after initialization to the nodes that perform the next write accesses. This strategy,
referred to as AFFINITY-ON-NEXT-TOUCH or MIGRATE-ON-NEXT-TOUCH, can be implemented
entirely in user space using system calls for memory protection and synchronous page migration
or in kernel space for transparent, asynchronous migration. Löf and Holmgren [61] have evaluated
a user space implementation of AFFINITY-ON-NEXT-TOUCH on an isolated domain of 8 nodes of a
Sun Fire 15000 system running an application calculating the scattering of electromagnetic waves
in a three-dimensional space mainly by solving a set of equations using the conjugate gradient
method. Using AFFINITY-ON-NEXT-TOUCH the performance is improved by up to 166%, showing
that data placement can have a huge impact on application performance.

Goglin and Furmento [50] have implemented AFFINITY-ON-NEXT-TOUCH for the Linux kernel
and compared the performance to a user space implementation. The kernel-based implementation
is about 30% faster on a four-node AMD Opteron 8347HE system and displays significantly less
overhead than the user space implementation for small memory regions. However, the authors
conclude that a user space implementation performs better in cases where larger memory areas
known by the application have to be migrated. The kernel-space implementation migrates such
areas page-by-page, whereas a user space implementation can migrate each of these areas in a
single operation with lower overhead.

AFFINITY-ON-NEXT-TOUCH represents a simple and elegant way to migrate data to nodes on
which it is accessed. However, it is up to the programmer or a software component on a higher
level to trigger page migration. AFFINITY-ON-NEXT-TOUCH can be seen as a basic method for data
placement that can be employed in more complex and more specific approaches for optimization.

Carrefour

Dashti et. al [44] have proposed CARREFOUR, a NUMA-aware data placement mechanism for
the Linux kernel. Unlike other approaches for NUMA-aware data placement, CARREFOUR focuses
on the avoidance of congestion on memory controllers and interconnect links and considers the
reduction of the latency of memory accesses by improving data locality only as a secondary goal.
The approach is based on four techniques:

– page co-location places a page on the same node than the accessing core,
– page interleaving places pages on nodes in a round-robin fashion,
– page replication replicates pages on multiple nodes and
– thread clustering co-schedules threads according to their intensity of data sharing.

Which combination of these techniques is used and how each technique is applied depends on
the behavior of the applications that execute on the machine. This involves global decisions that
enable or disable individual techniques globally and page-local decisions that enable or disable
techniques per page. The statistics that serve as a basis to characterize program behavior are
derived from values provided by a measurement component that uses INSTRUCTION-BASED
SAMPLING [48] (IBS), a sampling mechanism available on recent AMD processors that provides
detailed information on the execution of instructions (e.g., whether an instruction performs a
memory access, whether the access targets local or remote memory, the duration of the access, etc.).

Global decisions are taken in four steps. In the first step, the system decides whether data
placement is necessary or not. To this end, CARREFOUR compares the number of memory accesses
per time unit of the entire system to an experimentally determined threshold of 50 accesses per
microsecond. If the actual value for the application is below the threshold, CARREFOUR is disabled
and no further actions are taken. The second step consists in deciding whether page replication
should be enabled or disabled. To avoid high synchronization overhead due to frequent updates of
the contents of pages, page replication is only used for applications whose fraction of read accesses
to DRAM compared to the total number of accesses to DRAM is above 95%. In addition, there
must be enough free memory before page replication to avoid that the replication causes pages
to be swapped out to disk. In the third step, CARREFOUR checks whether interleaving should

14

Chapter 2: Context and problem statement

be used to distribute requests to main memory to all memory controllers. This decision is based
on the memory controller imbalance, which is defined as the standard deviation of the frequency of
memory accesses among nodes. Interleaving is only applied if the value is higher than a threshold
of 35%. The decision whether page co-location should be used is taken in the fourth and final step.
Co-location is enabled for applications whose local access ratio is below 80%, i.e., the fraction of
memory accesses that targets a local node is below 80%.

Page-local decisions are taken individually for each page by analyzing statistics that are derived
from IBS samples that belong to instructions accessing the page. A page is migrated to a node if
page migration is enabled globally and if the page is accessed only by cores of a single node. Page
replication triggers if the mechanism is allowed globally and if the page has only been accessed
by reading instructions. A page that is accessed by cores from multiple nodes in both read and
write mode is placed using the interleaving mechanism that moves the page on the node with the
smallest number of memory accesses per time unit in order to reduce contention.

The experimental evaluation of CARREFOUR has been conducted on two AMD Opteron systems
machines with 16 and 24 cores, respectively, grouped into four nodes. The applications that
have been used for this evaluation are the PARSEC BENCHMARK SUITE [18, 9] (version 2.1), the
FACEREC facial recognition engine [10] (version 5.0), the METIS [5] benchmark suite and the
NAS PARALLEL BENCHMARKS [6]. The performance of CARREFOUR have been compared to the
default first-touch page placement strategy of the Linux kernel, interleaving across all nodes as
well as the AUTONUMA patchset [41] for the Linux kernel, which migrates pages to the nodes
of the accessing cores. For single-application runs, CARREFOUR performs significantly better
than default page placement (up to 3.63× faster). Compared to interleaving across all nodes,
CARREFOUR performs significantly better in most cases and limits performance degradation in
cases, where interleaving across all nodes degrades performance significantly compared to the
default placement of the operating system (the maximum performance degradation of CARREFOUR
is 4%). In comparison with AUTONUMA, CARREFOUR provides performance comparable results
or performs significantly better. CARREFOUR fails to improve performance of applications with fast
changes in behavior due to the limited sampling accuracy necessary for low-overhead sampling.

CARREFOUR shows that contention is an important issue on NUMA systems as optimizations
decreasing contention result in significant improvement of the execution time. The approach is also
an example of an optimization that reacts to actual behavior of an application at execution time
and that is thus able to react to dynamic changes. Implementation at the operating system layer
allows a wide variety of applications to benefit from the optimizations, but limits the granularity
for data placement to entire pages of memory.

MAi

The MEMORY AFFINITY INTERFACE [77] (MAI) is an interface for data placement designed for
high performance computing applications that operate on large arrays. The implementation of
MAI provides seven policies for the distribution of the pages of an array: bind_all, bind_block, cyclic,
cyclic_block, skew_mapp, prime_mapp and random:

– The bind_all policy places all pages on a single node and switches to other nodes only if all of
the memory of the current node is in use.

– The bind_block policy first divides the array into blocks and then places each block on a
different node.

– The cyclic policy distributes the pages of an array in a round-robin fashion over all nodes of
the machine, such that the ith page is placed on the node whose identifier is i mod M , with
M being the number of nodes.

– Similarly, the cyclic_block policy distributes blocks of subsequent pages on nodes in a round-
robin manner, for example, the first two pages could be placed on Node 0, the third and
fourth page on Node 1 and so on.

– The skew_mapp policy places the ith page of an array on node n = (i+ b iM c+ 1) mod M .
– Prime_mapp combines two policies: first, it associates pages to P virtual blocks of data using

the cyclic policy with P being a prime number and P ≥ M . The second step consists of

15

Chapter 2: Context and problem statement

distributing the virtual blocks to nodes using the cyclic policy again.
– The last policy used in the paper is random, which places pages randomly across nodes.

The purpose of the more complex policies skew_mapp and prime_mapp, originally proposed in [56],
is to avoid node contention that results from very regular memory accesses and distributions by
the cyclic or cyclic_block policy. For example, this is the case if an array is divided into equal-sized
blocks whose size in pages is a multiple of the number of nodes. The cyclic policy would distribute
the pages of the entire array, such that the distribution within each block is identical, which can
lead to contention when the blocks are processed in parallel. The skew_mapp and prime_mapp
policies yield different distributions for each block and thus avoid contention due to regular access
patterns.

The evaluation of MAI has been conducted on systems with four and eight NUMA nodes for
the FFT and CG applications from the OpenMP version of the NAS PARALLEL BENCHMARKS [57]
as well as for an OpenMP implementation of a geophysics application [34]. The policies proposed
by MAI can improve performance by up to 31% compared to the default first-touch policy of the
operating system, but must be chosen manually. The authors have concluded that the best strategy
for data placement depends on the target architecture as well as on the structure of memory
accesses. Machines with a high difference between the latency of local and remote accesses benefit
from data placement that optimizes for locality, such as bind_block, while execution on machines
with a low difference between these latencies can be improved with placement that improves load
balancing, such as cyclic, random or skew_mapp. Applications with a clear affinity of computations
and data yield higher performance with bind_block and applications with irregular accesses benefit
from distribution of data over nodes.

The results presented in the experimental evaluation of MAI show that the behavior of an
application requires different kinds of distributions of data to nodes and highlights that the
architecture also plays an important role in the selection of a placement strategy.

Minas

The conclusions drawn from the evaluation of MAI form the basis of the MINAS [76] framework,
which combines the data placement capabilities of MAI with a preprocessor called MAPP and
NUMARCH, a module that provides information about the target architecture. MAPP processes
the source code of an application, finds shared, static arrays and replaces their declarations with
appropriate calls to memory allocation and distribution functions of MAI. The actual policy for the
data distribution chosen by MAPP depends on the characteristics of the NUMA platform reported
by NUMARCH. For systems with a high remote access latency compared to the latency of local
accesses, the bind_block policy is chosen in order to optimize for latency. On systems with lower
remote access latency, the framework optimizes for bandwidth and uses the cyclic policy. In the
experimental evaluation, the authors compare the performance of the automatic optimization with
MINAS to the default page placement policy of the operating system as well as to hand-tuned
versions of the applications using combinations of distribution policies that best match the data
access patterns. The applications used for evaluation are the same as for the evaluation of MAI
with an additional benchmark that simulates wave propagation in three dimensions. The automatic
solution improves performance compared to the default page placement strategy of the operating
system, but remains behind the performance of the hand-tuned codes. The difference between the
automatic and the hand-tuned versions ranges from 0% to 25%.

MINAS is an effort to reduce the burden of the programmer to identify relevant data structures
and to choose architecture-specific distributions. The results show that although the automatic
approach cannot match the performance of hand-tuned code, automatic optimization can improve
performance significantly.

Data placement with MINAS based on data sharing

In [66], the MINAS framework has been employed to improve data placement of applications
from the C version of the NAS PARALLEL BENCHMARKS [15]. In a first step of this approach, the
application is executed in a full-system simulator and its memory accesses are recorded to a trace

16

Chapter 2: Context and problem statement

file. The trace file is then analyzed in order to generate sharing matrices that indicate for each pair
of threads how intensively these threads communicate.

The approach uses two metrics to characterize communication, the first is based on the amount
of memory that is accessed by two threads, while the second metric measures the number of
accesses to shared memory blocks. The two metrics are evaluated separately and threads are
grouped into pairs with maximum communication according to the metric. These pairs are then
used to generate a second sharing matrix that captures communication between pairs of threads.
The reason for this grouping is that caches are often shared between pairs of cores. Pairs with
maximum communication can thus take advantage of the shared cache, reducing the mapping to a
mapping of pairs of pairs of threads optimizing off-cache communication. However, the number of
cores per cache can be higher than two and more complex groupings than pairs might be necessary
for an optimal mapping. According to the authors, using pairs is still a reasonable approximation
in these cases.

The experimental evaluation has been conducted on an AMD Opteron 875 system with 8
NUMA nodes and 16 cores in total, as well as on an Intel Xeon X7560 system with 4 NUMA nodes
and 32 cores in total. It showed that for thread and data mappings based on the sharing matrix,
significant improvements on the execution time of up to 75% can be achieved over default thread
and data mapping of the operating system. These performance gains have been achieved for
applications that initialize data sequentially, and for which the default page placement policy of
the operating system allocates all pages on the same node. For applications that initialize data
in parallel, no significant speedup has been achieved. For the different types of applications and
platforms the choice of the metric for the sharing matrix (amount of memory or number of accesses)
did not have a significant impact.

The approach shows that profiling can be used to obtain detailed information on data exchanges
between threads, which can be exploited for improved data placement of applications with distinct
patterns for memory accesses.

Feedback-directed page placement for OpenMP

Marathe et al. have proposed trace guided placement of pages for OpenMP programs [62].
The approach is divided into three phases: trace generation, affinity decision and trace-guided page
placement. During trace generation, the framework executes a truncated version of the program
whose data placement is to be improved. The framework samples detailed information about
memory accesses and memory allocations by using the processors’ performance monitoring units
and by intercepting calls to the memory allocator of the C / FORTRAN run-time library. The
subsequent affinity decisions after the sampling consist in determining on which node each page
should be placed, based on the accesses from the trace. The framework provides a simple model,
in which the latency of a remote access is assumed to be independent from the distance between
the requesting core and the node that satisfies the request as well as a more sophisticated model
that takes into account varying latencies. In the former model, a page is associated to the node
with the highest number of accesses to the page. The latter model determines the aggregate access
cost for each node and associates a page with the node with the minimal cost. The aggregate access
cost corresponds to the sum of the products of the number of accesses from a node and the cost of
an access.

The actual page placement is carried out at execution of the entire program by intercepting calls
to the memory allocator and by initializing pages on the appropriate node before handing the mem-
ory regions to the application. The authors have shown that for applications of the C version [7]
of the NAS PARALLEL BENCHMARKS [15] and applications from the SPEC OMPM2001 [14]
benchmarks, the number of remote memory accesses and thus the execution time can be decreased
significantly on a NUMA system with four nodes. The authors have also pointed out that simple
round-robin page placement on the available nodes using LIBNUMA [58] yields similar results.

Feedback-directed page placement is another approach that exploits information obtained
through profiling for improved data placement. However, in contrast to MINAS with profiling, the
feedback-directed page placement does not rely on a full system simulator, but uses mechanisms in
the run-time library as well as hardware support. The results also illustrate that interleaving across

17

Chapter 2: Context and problem statement

NUMA nodes can also be effective and that sophisticated mechanisms are not always needed.

2.4.2 Scheduling

The following approaches rely on scheduling as the main mechanism to improve the perfor-
mance of memory accesses. We first present SCHEDULE REUSE, which schedules loop iterations to
cores to match the node associated to the core executing an iteration with the node whose memory
contains the data that is accessed during the iteration. The second approach covers scheduling in
applications that do not impose any specific order for task execution.

Schedule reuse

Nikolopoulos et al. [68] have proposed an approach that addresses NUMA-aware scheduling of
loop iterations in OpenMP applications with irregular accesses to main memory. The first example
of irregularity handled by the approach results from loop nests, where the iteration space of an
inner, parallel loop depends on the index of an outer loop, such that the assignment of iterations
of the inner loop to processors changes between iterations of the outer loop. For data structures,
such as arrays, that have been distributed to nodes using a regular structure, e.g., in blocks or by
interleaving across nodes, this leads to a mismatch between the nodes to which the loop iterations
are assigned and the nodes that contain data. The other example given in the paper contains
parallel loops that perform array accesses whose array indexes are calculated from the loop indexes
by indexation of an indirection table. In addition, the array itself can be distributed irregularly,
e.g., with blocks of different size resulting from a generalized block distribution.

The main idea of the approach is to first distribute the pages of a data structure accessed by a
loop nest over the nodes of the system using an application-specific description of the distribution
provided by the programmer through code annotations and to schedule loop iterations accessing
the data on the same nodes. The actual placement of pages is implemented by scheduling the
iterations first accessing the data structure to nodes according to the description, such that first-
touch allocation places the pages appropriately. Data locality is addressed by assigning subsequent
iterations accessing the data to the processors associated to the containing nodes.

The key aspect for local accesses after the distribution is the construction of a two-dimensional
array that contains one column for each processor, each of which contains the loop indexes that
result in accesses to the local memory of the processor according to the data distribution. Hence,
to determine the set of iterations that should be carried out by a specific processor, it is sufficient
to iterate over the corresponding column in the array. The loop in the original program is then
replaced by an outer loop with indexes from the lowest to the highest node identifier and an inner
loop that iterates over the elements of the column that is associated to the node. The outer loop is
executed in parallel, with one loop index assigned to every processor.

The authors did not describe any formal method to construct the array and to transform loops,
but suggested that an optimizing compiler could carry out this task.

The approach has been evaluated on an application that performs LU decomposition of dense
matrices and several kernels from a weather forecast system performing transpositions between
grid spaces with irregular densities. All experiments have been conducted on an SGI Origin 2000
system with 64 processors grouped into 32 nodes. For LU decomposition, three versions have been
compared: an unmodified OpenMP version, a modified OpenMP version with data distribution
directives supported by the SGI compiler and the SCHEDULE REUSE approach of the authors.
The kernels from the weather forecast system have been implemented using OpenMP, with the
SCHEDULE REUSE approach and with explicit data partitioning and message passing using MPI.
The conclusions from the experiments are that the schedule reuse approach outperforms both
OpenMP versions for LU decomposition (up to two times faster than the unmodified OpenMP
version), that it outperforms the unmodified OpenMP versions of the irregular kernels and that it
provides performance comparable to the MPI versions.

SCHEDULE REUSE illustrates that detailed, static information about data accesses, derived from
the source code of the application can be combined with a description of an architecture-specific
data distribution. This aspect is particularly important to address irregular data distributions and

18

Chapter 2: Context and problem statement

irregular accesses to memory.

Scheduling of unstructured parallelism

The optimizations proposed by Yoo et al. in [86] address applications with unstructured
parallelism, i.e. parallel sections with independent tasks that can be scheduled in any order. The
framework for task-parallelism used in the paper is a custom run-time library for task-parallelism
provided by the authors. Although there are no explicit data dependences between tasks in these
applications, two or more tasks can share data if they access a common set of addresses. The
authors did not address NUMA issues directly and focused on cache performance by executing
tasks that share data on cores that are near in the memory hierarchy. However, the approach is
relevant for this discussion of related work as it shows how information on fine-grained data
sharing can be exploited in the run-time system of a task-parallel language.

The approach consists of three major parts. In the first part, the workload is profiled in order
to derive information on data sharing between tasks. The second part consists in grouping tasks,
ordering groups and assigning the groups to work-queues associated to the components of the
memory hierarchy. The third part addresses dynamic load balancing through locality-aware
task-stealing.

The result of the profiling run is a task sharing graph whose vertexes represent tasks and whose
undirected edges capture data sharing relations between tasks. The weight associated to an edge
indicates how many cache lines are accessed by the two tasks that are connected by the edge. The
graph is then partitioned heuristically and recursively into groups for each level of the memory
hierarchy, starting with the last level cache. Each task group is chosen such that the working set of
the tasks fits into a cache of the targeted level in the memory hierarchy and such that intra-group
data sharing is maximized. The result is a hierarchy of task groups that can be scheduled over
the work-queues associated to each component of the memory hierarchy, e.g., the result can be a
hierarchy with task groups for the work-queues of first level caches that belong to groups for the
work-queues of second level caches that in turn belong to a groups for the work-queues of third
level caches and so on.

At execution time, the tasks are executed by worker threads with one worker thread per core.
When a worker has finished executing a task, it first tries to obtain a task from its local queue
associated to its first-level cache. If this queue is empty, the worker attempts to steal tasks from
one of the queues associated to the first-level cache of its sibling cores with respect to the next level
in the memory hierarchy (i.e., the cores sharing a second-level cache with the core of the stealing
worker). If these queues are also empty, the worker tries to obtain a task group from the queue
associated to its second level cache.

The authors have evaluated their approach on a set of general-purpose workloads (database, 3d
image reconstruction, collision detection, image processing, matrix multiplication and a solver for
partial differential equations) ported to the author’s framework for task parallelism executing on
three simulated systems with core counts ranging from 32 to 1024. Besides performance evaluation
of the entire approach with fixed parameters, the authors have also explored different values (e.g.,
how many tasks are stolen by a single attempt for work-stealing) and different heuristics (e.g.,
group and task ordering, whether to use locality-aware work-stealing or not or the heuristic for
the selection of the victim for a steal). However, we only provide a summary of the results without
reproducing all the details. Task grouping, ordering and assignment to the queues, but without
locality-aware work-stealing can speed up execution by up to 2.39× on 32 cores for memory-
intensive benchmarks and up to 3.57× on 1024 cores. Locality-aware work-stealing on 32 cores
can speed up execution by as much as 1.9× compared to random work-stealing with artificial load
imbalance created through a number of workers that is smaller than the number of cores.

The approach shows that exploiting data sharing in the scheduler can lead to significant
performance improvements with higher benefits for larger systems. It also illustrates that initial
assignment of tasks can be combined with a locality-aware technique for load-balancing that reacts
to the circumstances at execution time. Our approach for topology-aware scheduling presented in
Section 7.3 uses a similar technique.

19

Chapter 2: Context and problem statement

2.4.3 Combined scheduling and data placement

For the presentation of related work combining NUMA-aware scheduling and data placement,
we have selected three approaches. The first approach, FORESTGOMP, relies on precise hints on
affinities between OpenMP threads and data provided by the programmer. The second approach
targets algorithms operating on arrays and relies on the specification of a more general pattern for
the distribution of array elements to nodes provided in the source code. The last approach, LAWS,
is designed for divide-and-conquer algorithms and does not require any modification of the source
code of the application.

ForestGOMP

Broquedis et al. have proposed FORESTGOMP [29, 31], an OpenMP run-time with a resource-
aware scheduler based on the BUBBLESCHED [83] scheduler and a NUMA-aware allocator based
on the MAMI [32, 4] memory interface. FORESTGOMP uses three key concepts: grouping of
OpenMP threads into bubbles, scheduling of threads and bubbles using a hierarchy of run-queues
and dynamic migration of data upon load balancing.

At the beginning of the execution, FORESTGOMP extracts information about the memory
hierarchy of the target platform automatically using HWLOC [30] and creates a hierarchy of run-
queues reflecting this topology. For example, the run-time system might create one run-queue for
the entire machine, one run-queue for each NUMA node, one run-queue for each shared cache
and one run-queue for each core. Each of the run-queues forms a scheduling domain that restricts
the execution of scheduling entities in the queue to the part of the memory hierarchy that the queue
is associated to. The scheduling entities used by the BUBBLESCHED scheduler are OpenMP threads
and bubbles. Bubbles are groups of threads or nested groups of bubbles and express data sharing
among threads or access of a group of threads to data on the same node. The threads that form
a bubble are kept together as long as possible to avoid that threads accessing the same data are
scattered across the entire machine.

The creation of bubbles is carried out by the run-time system and takes place every time a
parallel section is encountered. The set of threads that forms a bubble is identical with the team of
threads of a parallel section. Nested parallel sections, i.e., parallel sections encountered within a
parallel section, lead to the creation of nested bubbles aggregating other bubbles.

Resource-aware scheduling in FORESTGOMP is implemented using two scheduling algorithms:
the memory bubble scheduler and the cache bubble scheduler. The NUMA-aware scheduler relies on
so-called memory hints that summarize which data regions will be accessed by a single thread or a
team of threads. Memory hints are provided by the programmer by calling appropriate functions
of the run-time system before creating a parallel section or from a thread within a parallel section.
The run-time attaches information derived from these hints to threads and bubbles, which allows
the scheduler to distribute threads accordingly. In a first step, each thread is associated to the node
that holds the highest fraction of the thread’s data among all nodes. Bubbles that contain threads
which are associated to different nodes explode and their threads are distributed accordingly. If the
distribution resulting from the first step leads to an imbalance between cores, the run-time relaxes
the scheduling constraints for certain threads and associates them to unused cores. To limit the
overhead associated to data migration from one node to another, the run-time chooses the threads
with the least amount of attached data for redistribution. Once the distribution of threads has
finished, the system migrates the data of relocated threads to the right nodes. The distribution of
threads and data to nodes is thereby completed and the cache bubble scheduler can start distributing
threads within each node.

The goal of the cache bubble scheduler is to maximize data reuse within caches. Three methods
are combined for this purpose. First, the cache bubble scheduler attempts to place the threads of
a bubble on cores that are close in the cache hierarchy, e.g., on cores sharing the same cache, as
threads of the same bubble are likely to access a common set of memory regions. Second, the
scheduler tries to exploit temporal locality by restoring the mapping of threads to locations from
the previous invocation of the scheduler. Finally, a core that becomes idle first tries to steal a thread

20

Chapter 2: Context and problem statement

from a nearby core before trying to steal a thread from a remote core.
In order to be able to react to changes in program behavior, the run-time allows the application

to update memory hints during execution of a parallel region. Every time a hint is updated,
the scheduler is invoked to check the current distribution of threads and to redistribute threads
appropriately if necessary. To detect changes of affinities not indicated by the programmer, FOREST-
GOMP also monitors hardware performance counters and invokes the scheduler automatically if
the fraction of remote memory accesses exceeds a certain threshold.

The evaluation of FORESTGOMP was carried out on a modified version of the STREAM
BENCHMARK [63] named TWISTED-STREAM and an application performing LU decomposition
executing on an AMD Opteron platform with four NUMA nodes.

The TWISTED-STREAM benchmark operates on three vectors A, B and C, divided into M
blocks Ai, . . . , AM , Bi, . . . , BM and Ci, . . . , CM , with M being the number of nodes of the machine.
A team of threads is created for each node and each team operates on three blocks, one from each
vector (the first team operates on blocks A0, B0 and C0, the second on blocks A1, B1 and C1, etc.).
In the middle of the execution the affinities between threads and data change. For the configuration
referred to as TWISTED-66, each team changes the affinities for two of the three blocks (e.g., the
first team operates on A0, B1 and C1, the second on A1, B2 and C2, etc.). In another configuration,
called TWISTED-100 each team changes the affinities for all of its blocks (e.g., the first team operates
on A1, B1 and C1, the second on A2, B2 and C2, etc.).

The performance of FORESTGOMP on the TWISTED-STREAM benchmark is compared to
the OpenMP run-time of the GNU C compiler named LIBGOMP [40] and to page migration
using AFFINITY-ON-NEXT-TOUCH. For TWISTED-100, FORESTGOMP only needs to adjust the
distribution of threads to nodes without migration of data, resulting in 25% less execution time
compared to LIBGOMP. The gain over page migration depends on the number of iterations that
the benchmark performs after the change of affinities, as the relative overhead for page migration
decreases with each iteration. The speedup over page migration ranges from 7.9× for a single
iteration to 1.3× for 128 iterations. For TWISTED-66 FORESTGOMP has to migrate one third of the
data. For less than three iterations, FORESTGOMP is thus slower than LIBGOMP, but still faster
than AFFINITY-ON-NEXT-TOUCH. For more than three iterations, FORESTGOMP outperforms both
LIBGOMP and AFFINITY-ON-NEXT-TOUCH.

Data affinities in the application performing LU decomposition are more complex and change
more frequently than for the STREAM benchmark. Hence, instead of giving precise hints for
affinities, the authors have configured FORESTGOMP to mark the entire matrix for AFFINITY-
ON-NEXT-TOUCH each time the fraction of remote memory accesses measured with hardware
performance counters exceeds a certain threshold. This results in a 30% decrease of execution time
compared to interleaving of the matrix across all nodes of the machine.

In conclusion, FORESTGOMP performs best with clear affinities between threads and data
and if locality for changing affinities can be restored through scheduling without migration. The
approach shows that information that is missing in a more abstract software layer, i.e., the run-time,
can be compensated by propagating more detailed information from the application.

Data distribution based on node arrangements

Bircsak et al. have proposed a set of directives for NUMA-aware programming in OpenMP [19].
The approach mainly addresses data placement for arrays, but also provides directives that define
constraints for the placement of computations. The distribution of the elements of an array requires
two parts: a (possibly) multi-dimensional arrangement of the nodes of the system in the form of a
matrix containing the node identifiers and a set of distribution policies specifying one policy for
each dimension of the array to be distributed. The arrangement does not necessarily represent
any physical relationship of nodes and serves only as an auxiliary data structure to determine the
mapping of array elements to nodes. The role of a distribution policy is to (1) partition the range of
a dimension of the array whose mapping is to be determined and (2) to define the set of nodes that
is available for each partition. The combination of the policies from the outermost to the innermost
dimension and the arrangement of nodes defines for each element of the array to which node the
element will be associated. There are three policies to choose from: BLOCK, CYCLIC and *. The

21

Chapter 2: Context and problem statement

implications of these policies are the following:

– The BLOCK policy divides the range of an array dimension into equal-sized blocks and
creates equal-sized partitions from the respective dimension of the node arrangement.

– The CYCLIC policy associates to each element of the array dimension an element of the
respective dimension of the node arrangement in a round-robin fashion.

– Finally, the * policy defines that the respective dimension should not be partitioned at all.

The following examples are adapted from the examples given in [51] and illustrate the use of
distribution policies and node arrangements. As a first example, consider a one-dimensional array
with 1024 elements that is to be mapped to a total of eight nodes N0 to N8. Using the BLOCK
policy, the array is divided into 8 blocks of 128 elements. The first 128 elements are mapped to the
first node, the second 128 elements to the second node and so on, as illustrated in Figure 2.6a. If
the CYCLIC policy is used, the elements are distributed in a round-robin fashion to the nodes, such
that the ith element is placed on the (i mod 8)th node, as shown in Figure 2.6b.

More complex distributions can be defined by combining several policies and by changing
the arrangement of nodes. As an example, consider a two-dimensional array with 128 rows and
256 columns and an arrangement of eight nodes in a 4 × 2 matrix as in Figure 2.6c. By using a
(BLOCK, BLOCK) policy, the array is divided into four rows of 32 elements and each row is divided
into two columns of a width of 128 elements. Hence, the matrix is divided into blocks of size
32× 128, each associated to a different node, as shown in Figure 2.6d. The block in the first row
and the first column is placed on the node at the first row and first column of the arrangement,
the block in the first row and second column to the node at the first row and second column of
the arrangement and so on. For a (BLOCK, CYCLIC) distribution, the matrix is divided into eight
rows and the columns of each row are distributed in a round-robin fashion among the nodes of
the second dimension of the arrangement. Hence, the ith element in the jth row of the matrix is
placed on the node at the ith row and the (j mod 2)th column of the arrangement. Figure 2.6e
illustrates this distribution. As a last example, consider a (CYCLIC, CYCLIC) distribution that
associates both columns and rows of the matrix with columns and rows of the arrangement. In the
resulting distribution the ith element in the jth row of the matrix is placed on the node at the (i
mod 4)th row and the (j mod 2)th column of the arrangement as illustrates by Figure 2.6f.

The approach also allows the programmer to define the granularity of a distribution by specify-
ing if the distribution applies to elements or pages. In the first case, the partitioning of the array is
done with element granularity as in the examples above. In the latter case, elements are grouped
into pages and the pages are mapped to nodes according to the distribution.

To turn accesses to an array within a loop nest into accesses to local memory, the iterations must
be distributed to cores of the NUMA nodes according to the distribution. This is achieved with
help from the compiler as well as support by the run-time. In a first step, the compiler parametrizes
the loop bounds and loop increments with the node identifier, such that the cores of a node only
perform the loop iterations that result in accesses to the node’s local memory. In the second step,
the compiler partitions the iteration space of the outermost loop among the cores of a NUMA node.
If this loop has only few iterations, the programmer can specify that another loop in the loop nest
should be chosen for the partitioning among cores. The partitioning can be achieved using a cyclic
assignment of loop indexes to cores or by dividing the iteration space into blocks that are each
assigned to a different core. The role of the run-time system is to pin threads on the correct cores
and to make sure that the iterations are assigned correctly to the appropriate threads.

If the assignment of loop iterations to nodes is not optimal, e.g., if multiple arrays are involved
in a computation, the programmer can specify explicitly on which node a computation should
be carried out. This is done by using the ON HOME directive and by passing an reference to an
array element as a parameter. The node to which the element is associated to defines where the
computation should take place.

However, which combination of policies yields optimal performance depends on the pattern of
accesses to array elements. In some cases, it is easier to rely on dynamic page migration. This is
supported through two directives, namely MIGRATE_NEXT_TOUCH and MIGRATE_TO_OMP_
THREAD. The former causes the pages that form an array to be migrated to the nodes of the first

22

Chapter 2: Context and problem statement

0 127 128 255 256 383 384 511 512 639 640 767 768 895 896 1023...

N0 N1 N2 N3 N4 N5 N6 N7

(a) Simple BLOCK distribution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 10231022102110201019101810171016

N0 N1 N2 N3 N4 N5 N6 N7 N0 N1 N2 N3 N4 N5 N7

1015

N6N5N4N3N2N1N0N7

(b) Simple CYCLIC distribution

0 0

2

4

6

1

3

5

7

0 1

1

2

3

(c) Arrangement

0

...

31

32

0 1 2 126 127 254 255128 129 253...

N0

127

...

63

64

95

96

...
...

...

N1

N2 N3

N4 N5

N6 N7

(d) BLOCK, BLOCK distribution

0

...

31

32

0 1 2 126 127 254 255128 129 253...

127

...

63

64

95

96

...
...

...

N0 N1 N0 N0 N0N1 N1 N1 N0 N1

N0 N1 N0 N0 N0N1 N1 N1 N0 N1

N2 N3 N2 N2 N2N3 N3 N3 N2 N3

N2 N3 N2 N2 N2N3 N3 N3 N2 N3

N4 N5 N4 N4 N4N5 N5 N5 N4 N5

N4 N5 N4 N4 N4N5 N5 N5 N4 N5

N6 N7 N6 N6 N6N7 N7 N7 N6 N7

N6 N7 N6 N6 N6N7 N7 N7 N6 N7

(e) BLOCK, CYCLIC distribution

0

1

2

0 1 2 126 127 254 255128 129 253...

127

3

6

8

126

...

...

N0 N1 N0 N0 N0N1 N1 N1 N0 N1

N2 N3 N2 N2 N2N3 N3 N3 N2 N3

N4 N5 N4 N4 N4N5 N5 N5 N4 N5

N6 N7 N6 N6 N6N7 N7 N7 N6 N7

N6 N7 N6 N6 N6N7 N7 N7 N6 N7

N0 N1 N0 N0 N0N1 N1 N1 N0 N1

N2 N3 N2 N2 N2N3 N3 N3 N2 N3

N4 N5 N4 N4 N4N5 N5 N5 N4 N5

N6 N7 N6 N6 N6N7 N7 N7 N6 N7

N0 N1 N0 N0 N0N1 N1 N1 N0 N1

N4 N5 N4 N4 N4N5 N5 N5 N4 N5

4

5

7

(f) CYCLIC, CYCLIC distribution

Figure 2.6: Examples of distributions using BLOCK and CYCLIC

cores modifying the pages after the encounter of the directive. The latter directive migrates pages
to the node of the core executing the thread with the thread identifier that is passed as a parameter
to the directive.

By comparing different versions of an application performing LU decomposition without
pivoting on a 32-core ALPHASERVER GS320 system, the authors have concluded that data layouts
using the DISTRIBUTE directive employing the concepts of distribution policies and node arrange-
ments above perform substantially better than dynamic page migration due to the overhead of the
migration.

The approach shows that explicit data distributions for regular data structures provided by the
programmer can be combined with very fine-grained scheduling of instructions with appropriate
support by the compiler. However, deciding which distribution policy fits best and specifying
an appropriate node arrangement can be a difficult task that requires detailed knowledge of the
application. In addition, arrangements must be developed for each of the systems on which an
application is intended to execute in order to match the number of nodes of the system.

LAWS

Chen et al. have proposed LAWS [38] that combines NUMA-aware allocation and scheduling
with cache-aware scheduling of CILK tasks from earlier work [39] of the authors. The approach
targets divide-and-conquer algorithms with the following characteristics: the recursive steps of
the algorithm are represented by a tree of tasks in which each node represents one step, data
accesses only happen in leaf tasks and data sharing is likely to occur between siblings in the tree.
Furthermore, the program is assumed to perform multiple iterations with identically structured
task trees and equal relationships between tasks and the memory regions accessed during task
execution. LAWS has three main components: a NUMA-aware memory allocator, an adaptive DAG
packer and a NUMA-aware and cache-aware work-stealing mechanism.

NUMA-aware data placement in LAWS is carried out during the first iteration of the algorithm
by assigning the data sets of recursively created tasks of the task tree to NUMA nodes using the
following scheme. The root task of the tree for the iteration is assumed to represent the entire
computation performed by all tasks of the iteration and is thus associated to the entire data set

23

Chapter 2: Context and problem statement

of size D. At each recursive task creation below the root, the data set is assumed to be divided
equally among tasks. Hence, if the root task has n child tasks, the children are each assumed to
treat a data set of size D

n , with the first task treating the interval [0; Dn), the second task treating the
interval [Dn ;

2D
n) and so on. The same scheme is applied recursively to the resulting intervals and

the tasks located in the sub-trees of the children of the root task. NUMA-aware data placement
for M nodes consists in partitioning of the entire data set into M equal-sized intervals, allocating
each part on a different node, and associating tasks to nodes by analyzing the data intervals
that the task represent. For example, the data set of a task that represents an interval [a; b) with
a ≥ i·D

M and b < (i+1)·D
M should be placed on node i. The actual data placement makes use of

first-touch placement, which is the default placement policy of many operating systems. To achieve
the placement of the M intervals as described above, this implies that the tasks associated to the
intervals must be executed by cores of the appropriate nodes during the first iteration. That is, a
task whose data interval should be allocated on node i must be executed by a core of node i.

The role of the adaptive DAG packer is to provide the run-time system with information
for cache-aware task scheduling. In a first step, the working set of each task is estimated by
measuring the number of misses in the last level private cache during the execution of the task
and by multiplying this value with the size of a cache line. The measurement of cache misses is
performed at the first iteration of the algorithm using hardware performance counters. Based on
this information, the task tree is divided into so-called CF subtrees. A CF subtree is a tree for which
the sum of the working sets of its tasks fits into the shared cache of a node. The tasks of a same CF
subtree are called socket local tasks and will be scheduled to cores of the same node in order to favor
inter-task communication in the shared cache and to limit the number of capacity misses. However,
the estimation of the data set size of a task only approximates the actual size of the data set and
the packing into CF subtrees might yield suboptimal performance. Therefore, the DAG packer
adapts the packing from one iteration to another. The packing can be shrinked by breaking a CF
subtree into smaller trees by declaring the child tasks of the subtree’s root as roots of CF subtrees.
Similarly, it can be coarsened by aggregating CF subtrees by declaring their common parent task as
the root of a CF subtree. The adaptive packer compares the execution time of packings and shrinks
or coarsens the packing until a point is reached where a finer and a coarser packing both yield
longer execution times than the current packing.

The last component of LAWS is a triple-level hierarchical work-stealing scheduler that sched-
ules tasks to their associated nodes and that ensures that the socket local tasks of a CF subtree are
executed by cores of the same node. Each node is provided with a CF task pool that can only contain
CF root tasks and each core has a socket local task pool which can only contain socket local tasks. When
a core runs out of tasks, it first tries to steal a task from the socket local task pool of the cores of the
same node. If none of these pools contains a task that can be stolen, the core tries to steal a task
from the CF task pool of the local node. If this attempt also fails, the core tries to steal a task from
the CF task pool of another node. To avoid concurrency in the shared cache due to the execution of
tasks from multiple CF subtrees, the scheduler also ensures that all tasks of a CF subtree have been
executed before execution of a new CF subtree starts.

The authors have evaluated LAWS on a four-node AMD Opteron 8380 system executing a set
of applications that perform stencil computations and algorithms for Gaussian Elimination as
well as successive over-relaxation. Each benchmark is available in two versions. The first version
has a regularly structured execution DAG, while the computations of the second version form an
irregularly structured DAG. The performance of LAWS has been compared to plain CILK without
any modification and to an algorithm from earlier work [39] named CATS, which does not adapt
the packing after the first iteration. The improvement of LAWS over plain CILK ranges from 23.5%
to 54.2%. LAWS systematically outperforms CATS, which improves performance over CILK only
by up to 19.6%.

LAWS shows that implicit information on the structure of computations as well as the data
structures involved in the computations can be exploited both for data placement and scheduling
to increase the locality of memory accesses fully automatically by the run-time system.

24

Chapter 2: Context and problem statement

Optimization
for NUMA

Optimization
for caches

Data
placement

Scheduling Implementation layer

AFF.-ON-NEXT-TOUCH [61] X - X - Library
AFF.-ON-NEXT-TOUCH [50] (OS) X - X - OS
CARREFOUR [44] X - X (X)∗ OS
MAI [77] X - X - Library
MINAS [76] X - X - Preproc. + Library
MINAS + profiling [66] X X X (X) Preproc. + Library
Feedback-directed placement [62] X - X - Library
SCHEDULE REUSE [68] X - (X)∗∗ X Comp. + run-time
Unstructured parallelism in [86] - X - X Run-time
FORESTGOMP [29, 31] X X X X Run-time
Node arrangements [19] X - X X Comp. + run-time
LAWS [38] X X X X Run-time
∗ Part of CARREFOUR, but not evaluated in the paper ∗∗ Data is only placed initially and the approach focuses on scheduling

Table 2.1: Overview of basic characteristics of approaches in related work

2.4.4 Summary

The above presentation on related work illustrates that there are many different existing
approaches to improve data locality with respect to NUMA, to reduce contention on memory con-
trollers and interconnects and to improve the exploitation of caches through optimized scheduling
and data placement, resulting in significant improvements on performance. Although the discus-
sion only presents a small part of research in this area, the selected publications cover a certain
range of methods for the placement of data and instructions. The purpose of this section is to
summarize the approaches and to highlight the differences between them. The summary is divided
into three parts. First, we provide a overview of general characteristics. The second part focuses
on features related to optimized data placement and the third part summarizes characteristics of
the approaches for scheduling.

Main characteristics

The general characteristics of the approaches can be summarized as follows:

– the part of the memory hierarchy that the approach optimizes for, i.e, whether it aims at
improving accesses to main memory or accesses to caches.

– the implementation layer of the approach (e.g., a user space library to be used by a program-
mer, the operating system or the compiler).

– the supported framework for parallelism (e.g., OpenMP, POSIX threads or Cilk).
– whether the approach is based on optimized scheduling, optimized data placement or

whether it combines both of the techniques.

Table 2.1 details these points for all approaches presented earlier. Except the approach for unstruc-
tured parallelism, all of the papers we have selected provide NUMA-related optimizations. In
addition, MINAS with profiling, LAWS and FORESTGOMP also implement cache-related opti-
mizations. Optimized data placement is a cornerstone of the optimizations for the majority of
the approaches. The only exceptions are SCHEDULE REUSE, which only places data initially via
the first-touch mechanism for deterministic behavior with respect to data locality for subsequent
scheduling and the approach for unstructured parallelism, which does not provide any form of
explicit data placement at all. Optimized scheduling is provided by the last five approaches in the
table, namely SCHEDULE REUSE, the approach for unstructured parallelism, FORESTGOMP, node
arrangements and LAWS.

The principal layers of implementation are user space libraries (AFFINITY-ON-NEXT-TOUCH,
MAI and feedback-directed page placement), the operating system (the kernel version of AFFINITY-
ON-NEXT-TOUCH and CARREFOUR) and the run-time system (the approach for unstructured
parallelism, FORESTGOMP and LAWS). Some approaches cover two layers, in particular MINAS,
which provides a preprocessor and also relies on the user space library of MAI and SCHEDULE
REUSE as well as node arrangements, which combine optimizations in the compiler with a modified
run-time.

25

Chapter 2: Context and problem statement

Determination
of relevant

data by

Supported
data

structures

Granularity Time of
decision

Autom.
and
dyn.

adjust-
ment

Pas-
sive (P)

/ Ac-
tive (A)

AFF.-ON-NEXT-TOUCH [61] Programmer Any Pages Execution - P
AFF.-ON-NEXT-TOUCH [50] (OS) Programmer Any Pages Execution - P
CARREFOUR [44] Profiling Any Pages Execution X P
MAI [77] Programmer Arrays Blocks / pages Compil. + Exec. - A
MINAS [76] Preprocessor Static arrays Blocks / pages Compil. + Exec. - A
MINAS + profiling [66] Preprocessor Static arrays Blocks / pages Compil. + Exec. - A
Feedback-directed placement [62] Profiling Any Pages Before execution - A
SCHEDULE REUSE [68] Programmer Arrays Elements Compile-time - A
Unstructured parallelism in [86] - - - - - -
FORESTGOMP [29, 31] Programmer Not specified Not specified Execution X P+A
Node arrangements [19] Programmer Arrays Elements / Pages Compile-time - A
LAWS [38] Task graph Arrays Blocks Execution - A

Table 2.2: Overview of the features of data placement in related work

Characteristics of data placement

The approaches that support data placement differ in:

– how they determine which data is relevant for improved data placement, in particular
whether this is done automatically or if the programmer needs to specify relevant data
structures.

– which kinds of data structures are supported (e.g., arrays or any contiguous memory region).
– the granularity for data placement (e.g., single data elements, pages or blocks representing

large memory regions).
– the time when the decision for placement is taken (e.g., dynamically at execution time,

statically at compile time or during off-line profiling).
– the kind of data placement, i.e., passive placement that reacts to accesses and places data

accordingly or active placement that places data before it is accessed.
– whether data that has once been placed can be migrated dynamically to react to dynamic

changes at execution time.

Table 2.2 indicates that many of the approaches either rely on the programmer to determine which
data regions are relevant for data placement or determine these regions using profiling. MINAS
uses a preprocessor for this task, but is limited to statically allocated memory and LAWS derives
this information from the task graph, assuming that data is partitioned equally among leaf tasks.
Low-level approaches, i.e., AFFINITY-ON-NEXT-TOUCH, CARREFOUR and feedback-directed page
placement can handle any data structure, but the granularity for data placement is limited to entire
pages of memory. The other approaches handle arrays with varying granularity for the placement:
while MAI-based solutions distribute blocks of memory to different nodes, SCHEDULE REUSE and
node arrangements can handle individual elements of an array due to support by the compiler.
LAWS always places blocks of memory whose size depends on the number of tasks operating on
the array and the size of the array.

Regarding the moment at which the decision for data placement is taken, the approaches can
be divided into three sets. AFFINITY-ON-NEXT-TOUCH, CARREFOUR, FORESTGOMP and LAWS
take this decision at execution time. In contrast to this, data placement decisions in SCHEDULE
REUSE and node arrangements are the taken at compile time as the placement is specified in the
application’s source code. Feedback-directed page placement determines this relationship after
the profiling phase and before the start of the execution. The MAI-based approaches represent
an intermediate form in which some decisions are taken at compile time, i.e., the type of data
distribution, and others are taken at execution time, e.g., the exact set of nodes for a distribution.

Another difference between the approaches consists in the duration of the placement. In most
of the approaches data that has once been placed in is never migrated, unless explicitly requested
by the application. However, CARREFOUR and FORESTGOMP can react to dynamic changes in
application behavior and relocate data from one node to another.

26

Chapter 2: Context and problem statement

Type of
placement

Source for
placement
decision

Scheduling entity Time of
decision

Autom.
and dyn.
adjust-
ment

AFF.-ON-NEXT-TOUCH [61] - - - - -
AFF.-ON-NEXT-TOUCH [50] (OS) - - - - -
CARREFOUR [44] (Thread clustering)∗ (OS / PMU)∗ (OS threads)∗ (Execution)∗ (X)∗

MAI [77] Thread pinning - Pthreads Start of exec. -
MINAS [76] Thread pinning - Pthreads Start of exec. -
MINAS + profiling [66] Co-scheduling Data sharing Pthreads Start of exec. -
Feedback-directed placement [62] Thread pinning - Pthreads Start of exec. -
SCHEDULE REUSE [68] Loop scheduling Data distrib. Loop iterations Execution -
Unstructured parallelism in [86] Task placement Data sharing Tasks Start of exec. X
FORESTGOMP [29, 31] Thread placement Data distrib. OpenMP threads Execution X
Node arrangements [19] Loop scheduling Data distrib. Loop iterations Before loop start -
LAWS [38] Task placement Data distrib. Cilk tasks Execution X
∗ Part of CARREFOUR, but not evaluated in the paper

Table 2.3: Overview of the features of scheduling in related work

Finally, the approaches can be classified according to the type of placement. Passive methods,
such as AFFINITY-ON-NEXT-TOUCH and CARREFOUR react to the events of a given placement and
try to improve the mapping of data to nodes accordingly. The other approaches actively place data
before it is referenced. FORESTGOMP supports both active data placement, e.g., when migrating
threads and attached data, as well as passive placement when using AFFINITY-ON-NEXT-TOUCH.

Characteristics of scheduling mechanisms

To distinguish the approaches for scheduling we have identified the following characteristics:

– the type of placement (e.g., simple thread pinning, loop scheduling).
– the source of information on which placement decisions based (e.g., performance monitoring

units, information on the data distribution established by the approach itself or data sharing
between threads).

– the type of scheduling entities handled by the approach (e.g., operating system threads, loop
iterations, OpenMP threads or tasks).

– the time of placement decisions (e.g., dynamically during execution, at the beginning of
program execution or before a parallel loop).

– support for dynamic adjustments of an initial placement.

Although some of the approaches have been presented as solutions for data placement only,
they still rely on thread pinning, representing a minimal form of scheduling. Thread pinning
is a common technique to virtualize processing units by preventing the operating system from
migrating threads between cores, which guarantees a static mapping of threads to cores for
the entire execution time. Hence, these approaches do not use scheduling as a mean to place
computation close to data, but as a mean for deterministic mappings of threads to cores.

The approaches that use scheduling for improved data locality either rely on co-scheduling,
placing threads or tasks that share data on shared caches or closely in the memory hierarchy
(MINAS with profiling and the approach for unstructured parallelism), the distribution of loop
iterations to cores (SCHEDULE REUSE and node arrangements) or placement of threads and tasks
depending on the data that is being accessed (FORESTGOMP and LAWS).

The choice of where a scheduling entity is executed is either based on data sharing to minimize
communication between the entities or based on the distribution of data, limiting the delay of
accesses from cores to main memory. The type of scheduling entities depends on the supported
framework for parallelism and the granularity and can be POSIX threads, individual loop iterations,
OpenMP threads or fine-grained tasks, such as Cilk tasks or those of the custom framework for
unstructured parallelism.

Most approaches establish an initial placement at the beginning of the execution and only few
of them react to dynamic changes at execution time, e.g., load imbalance, by adjusting the initial
placement during execution.

27

Chapter 2: Context and problem statement

Conclusion

A closer look on the characteristics above reveals that not all of them are independent. A key
role is taken by the implementation layer, which has an influence on both data placement and
scheduling. The layer defines not only which information is available for placement decisions, but
also limits when decisions are taken, which granularity for data placement and which entities for
scheduling are available. This heavily influences the accuracy for capturing program behavior as
well as the accuracy of the prediction of future behavior. The farther away the layer is from the
application, the more it abstracts from the data structures and instructions and the less accurate the
method becomes. For example, compiler-assisted approaches can rely on detailed information on
data structures and instructions, e.g., individual elements of arrays and individual iterations of a
loop, while implementations at the operating system layer only have access to coarse information,
such as accesses to entire pages and threads. At the same time, low-level approaches are more
generic and support a wider variety of programming languages and frameworks for parallelism.
The choice of the implementation layer thus limits the range of solutions that is available for data
placement and scheduling but also determines to which applications an approach applies.

2.5 Summary and problem statement
As motivated in Section 2.1, task-parallel programming is an increasingly popular approach to

address the expectations on scalability, performance portability and productivity for applications
intended to run on many-core systems. The performance of the execution of a task-parallel program
strongly depends on an optimized run-time system that is able to exploit the underlying hardware
efficiently. Section 2.2 showed that optimization for the memory hierarchy, i.e., for caches and
non-uniform memory access, is a key factor in this context. The issues related to the efficient
exploitation of the memory hierarchy can be addressed through optimized placement of tasks on
cores and optimized placement of data on memory controllers as pointed out in Section 2.3. Ideally,
this placement is fully automatic and thus does not require any intervention by the programmer
to ensure high productivity. Furthermore, the solution should be able to adapt to an increasing
number of cores and memory controllers and be able to react to dynamic changes of application
behavior at execution time for load balancing to allow applications to scale on large machines.
Performance portability can only be ensured if the run-time is able to adapt to a wide variety of
machines and applications.

From the approaches discussed in the previous section, only LAWS and the approach for
irregular parallelism address task-parallel languages or task-parallel frameworks. The other
approaches apply to POSIX threads, OpenMP threads and loop iterations. The difference between
POSIX threads and tasks is that POSIX threads are intended to run persistently and independently
for a longer period of time with occasional synchronization, while tasks are short-lived entities
that are synchronized by a run-time. OpenMP threads are closer to the concept of tasks, but
originate from regularly structured loops 2. Loop iterations represent an extreme case regarding
the granularity, as an iteration can be composed of only a few instructions. However, to be efficient,
loop scheduling to different cores must aggregate loop iterations. In addition, these solutions only
apply to regularly structured applications based on loops. Finally, the approaches for task-parallel
frameworks rely on specific properties of the program whose execution is to be optimized: the
approach for unstructured parallelism relies on the property that tasks can be executed in any order
while LAWS addresses divide-and-conquer-style computations. Hence, none of the approaches
discussed in the previous section meets the needs with respect to the program structure and the
granularity for scheduling and data placement for task-parallel programs.

As far as transparency is concerned, the approaches can be divided into three groups. The first
group is composed of approaches that can be seen as technical solutions that help establish a specific
distribution. Both information on relevant data as well as the actual distribution for approaches of
this group must be provided by the programmer (e.g., AFFINITY-ON-NEXT-TOUCH, SCHEDULER

2. OpenMP 4 [25] supports fine-grained, dependent tasks, but the approaches above apply to earlier versions of
OpenMP that support only parallel loops and independent tasks.

28

Chapter 2: Context and problem statement

REUSE or node arrangements). The second group consists of approaches that automate placement
decisions, but which rely on information provided by the programmer (e.g., FORESTGOMP).
Approaches that belong to the third group gather information on relevant data automatically and
take placement decisions autonomously (e.g., CARREFOUR, MINAS or LAWS). However, the fully
automatic solutions of the last group are either restricted to specific kinds of data structures (e.g.,
MINAS for static arrays), to specific kinds of computations (e.g., LAWS to divide-and-conquer
algorithms) or cannot react to dynamic changes at execution time due to the use of off-line profiling
(feedback-directed page placement).

None of the solutions is fully transparent to the program, supports irregular applications and
is able to react to dynamic changes at the same time.

Hence, efficient placement of data and tasks for many-core NUMA systems motivates revisiting
previous run-time system designs and inventing new optimizations for the memory hierarchy
fitting the needs of task-parallel applications. One of the crucial points for fully automatic data
and task placement is the transparent collection of information on affinities between tasks and
data. However, recent task-parallel programming models afford new opportunities to the run-time
system to obtain detailed information on data that is accessed by a task as well as inter-task
dependences. Thus, mechanisms for data and task placement operating at execution time can base
placement decisions on this information. For example, point-to-point synchronization between
individual tasks expressed in the programming model and preserved by the compiler indicates
which tasks become ready in the future and which events lead to their activation. Models such as
OPENMP 4 [25], STARSS [70] or OPENSTREAM [72] allow inter-task dependences to be specified
as data dependences and are thus able to provide the run-time system with accurate information
on accesses to data by each task and data sharing among tasks. Our approaches for task and data
placement differ from existing work in the exploitation of this information for fully automatic,
portable on-line placement of tasks and data by the run-time that improves the locality of memory
accesses and thus performance significantly.

The solutions presented in this thesis combine point-to-point data dependences with detailed
knowledge on target architectures. This requires a profound understanding of all software layers
from the application over compilation to the run-time and the operating system. Application
behavior has to be taken into account as it defines to which requests and situations the run-
time system must be able to respond. Compilation has to be considered to decide which static
information and how it must be preserved for placement decisions by the run-time at execution
time. The run-time system represents the most important part of the solutions as it is responsible
for all placement decisions. Finally, the run-time must be NUMA-aware and must interact with
the operating system and the hardware efficiently in order to carry out requests of the application
with low overhead and to avoid being a bottleneck for performance.

The theoretical part of our work involves the design of data placement and task placement
techniques and elaborates the key aspects of application behavior and of the interaction with the
hardware and operating system that have an influence on performance in general and the locality
of memory accesses in particular. The practical side of our work consists in the implementation and
integration of these techniques into a state-of-the-art task-parallel run-time system, their validation
with a set of high performance, scientific applications on different hardware architectures and the
development of adequate methods for performance analysis.

Most of the concepts presented in this thesis apply to task-parallel programming in general and
can be adopted in the run-time systems of different task-parallel languages. However, the language
extension for task-parallel applications that we have chosen for our optimizations is OpenStream.
Like other modern task-parallel approaches, such as STARSS and OPENMP 4, dependences in
OpenStream are expressed as point-to-point data dependences between tasks. However, the use of
streams in OpenStream as first-class objects for synchronization offers a high degree of flexibility
and enables advanced patterns for parallel programming, such as dynamic pipelining. Our choice
for OPENSTREAM over other approaches has also been motivated by the fact that a widely accepted
standard such as OPENMP 4 had not been published at the beginning of this thesis as well as by a
close collaboration with Antoniu Pop, the author of OpenStream, and Albert Cohen.

29

Chapter 2: Context and problem statement

The next chapter provides an introduction to OpenStream. We present the basic concepts of
OpenStream, the syntax of OpenStream programs and its execution model.

30

3 OpenStream

This chapter provides an overview of OpenStream, a data-flow extension to OpenMP 3.0, which
we have chosen as a state-of-the-art, task-parallel language for the experimental evaluation of the
concepts presented in this thesis. We first introduce the basic concepts of OpenStream, namely
data-flow streams, dependent data-flow tasks and synchronization of tasks based on streams.
Producer-consumer relationships of an OpenStream program are captured by a dynamic task
graph, for which we give a lightweight formal definition. The syntax of OpenStream programs is
discussed in Section 3.2, followed by a series of examples illustrating this syntax in Section 3.3. The
execution model of OpenStream is presented in Section 3.4. The chapter closes with an outline of
the compilation of an OpenStream program in Section 3.5. All aspects of OpenStream presented in
this chapter refer to the original implementation before any modification for the concepts proposed
in this thesis.

3.1 Basic concepts
OpenStream [72] is a language extension 1 to OpenMP 3.0, which supports the specification of

fine-grained task parallelism, data parallelism, and pipelining in the C programming language.
The three central concepts of the extension are the control program, data-flow tasks and streams,
presented below. The semantics of OpenStream are underpinned by the Control-Driven Data Flow
(CDDF, [73]) formal computation model. However, in the following definitions we do not use the
fully-fledged CDDF model, but a simplified, partial model that focuses on the aspects relevant for
the discussion of the execution model.

Streams Streams are infinite sequences of elements of the same type that act as unbounded FIFO
queues for communication between tasks. Each element of a stream has a unique integer index
and is written using dynamic single assignment, i.e, each stream element is written at most once.
Elements that have not been written are undefined and remain inaccessible for read accesses.
Conceptually, a stream has a read position and a write position that define which elements of the
stream are affected by subsequent read and write accesses.

Control program The control program instantiates tasks and specifies inter-task dependences,
which are expressed as read and write accesses to stream elements. As an element of a stream
cannot be read before it has been written, stream accesses effectively determine the (partial)

1. OpenStream has been proposed by Antoniu Pop and was developed in the context of his thesis [71]. The work
presented in this thesis related to OpenStream is the result of a close collaboration with Antoniu Pop and Albert Cohen.

Chapter 3: OpenStream

execution order of tasks. In order to guarantee deterministic behavior, OpenStream requires that
the control program is sequential. However, under certain conditions the control program can be
parallelized, as shown in Section 5.5. In the sequential case, the control program is executed by the
root task of the OpenStream application, which corresponds to the main function of the program.

Data-flow tasks Tasks in OpenStream are short-lived, dynamic instances, defined by a work-
function and an a set of views. The work-function is generated from the body of the task and contains
the instructions to be executed when the task is scheduled. A view is a sliding window that allows
the task to access a set of consecutive elements from a single stream or from several streams
at once and is characterized by three attributes: the access type (read or write), the size of the
window called horizon and the burst, which corresponds to the number of elements the read or
write position of the stream is advanced after having determined the exact set of elements that
the window provides access to. The CDDF computation model allows the burst to be smaller
than the horizon for read accesses and restricts the burst to be equal to the horizon for write
accesses. Likewise, the current implementation of OpenStream allows the burst to be smaller than
the horizon only for read accesses, with the additional restriction that the burst must be zero. The
reason for this restriction is explained in Section 3.4.5.

Access to stream elements is only possible indirectly through views, there is no mechanism to
address specific elements of the stream directly. In the following parts, we illustrate how the actual
stream indexes of the elements of views are determined.

3.1.1 Stream accesses using views

Figure 3.1 illustrates accesses on a single stream with a reading and a writing view of two
different tasks. The initial state of a stream named a_stream before any access of producers and
consumers is shown in Figure 3.1a. All stream elements are undefined and no sliding window
provides access to them. The read position and the write position, indicating at which indexes the
next sliding windows of reading and writing views will start, are represented by R and W, initially
pointing to the same position i. Figure 3.1b shows what happens when the sliding window of the
reading view with a horizon and a burst of six elements is added. The base of the sliding window is
determined according to the current read position, enabling access to elements i, i+1, i+2, i+3, i+4,
and i+ 5 in read mode as indicated by the dotted rectangle. The read position is shifted by the
burst and now points to element i+6, causing the first element of the window of a subsequent read
view to start at index i+ 6. The write position is not modified and remains at element i. At this
point, the set of elements the consumer view provides access to is determined, but the consumer
cannot execute as the value of the elements is still undefined. Figure 3.1c shows the effect on the
stream state of a writing view with the same characteristics as the reading view treated before.
Again, the first element of the sliding window is i and access to elements i, i+ 1, i+ 2, i+ 3, i+ 4,
and i+ 5 is provided. The burst of six elements advances the write position of the stream, which
becomes equal to the read position. The elements of the stream remain unchanged until the task
with the writing view has finished execution. The state after termination of the writing view is
shown in Figure 3.1d, where the elements at indexes i, i+1, i+2, i+3, i+4, and i+5 have received
their respective values vi, vi+1, vi+2, vi+3, vi+4, and vi+5.

As shown in the examples above, the first element in the horizon of a view is always the element
at the read or write position when the sliding window is defined. Hence, it is not possible to access
elements at arbitrary positions without advancing the read or write position to the desired element.
In fact, stream indexes are only a concept of the formal semantics behind OpenStream, but do not
appear in the actual implementation at all.

3.1.2 Dynamic task graphs

Tasks with sliding windows on the same stream elements are able to communicate by changing
the elements’ values. Due to the principle of dynamic single assignment, each stream element can
only be written once and communication is unidirectional from a single producer of an element
to one or more consumers. These producer-consumer relationships are captured by a structure

32

Chapter 3: OpenStream

W
R

a_stream

(a) Initial state of the stream

a_stream

W Rburst

(b) Consumer view of six elements

W
R

a_stream

burst

(c) Producer view of six elements

W
R

a_stream

(d) After execution of the producer

Figure 3.1: Illustration of stream accesses with burst and horizon

called dynamic task graph. As OpenStream programs can create an arbitrary amount of streams
and tasks dynamically at run-time and as the instructions necessary to create them can be fully
embedded into the control-flow of the application, this graph can in general not be constructed
statically. Streams, tasks and stream accesses are only known at execution time and to find out
which tasks communicate. It is thus necessary to analyze their dynamic relationships obtained
from an execution trace. We say that an output view and an input view have been matched, when it
has been determined that they provide access to a common set of elements of the same stream.
Similarly, we define that two tasks are matched if there is at least one pair of matched views with
one view belonging to one task and the other view belonging to the other task. In the following
section, we define a minimal formal model for the definition of the dynamic task graph based on
matched views. The matching itself is neglected in this model and will be described informally in
Section 3.4.3.

Definition of a dynamic task graph

Each matched view can be formalized as a quadruple (u, s, is, ie) ∈ {R,W} × S ×N×N where
u indicates whether the view provides read or write access, s indicates the stream being accessed
from the set of streams S , is is the index of the first element of the sliding window defined by the
view and ie is the index of the last element included in the window. The horizon thus corresponds
to ie − is + 1. The burst is not modeled, as it is only necessary to determine the stream indexes,
which are already known in this definition. Let V denote the set of all possible views. Each view can
be broken down into a set of accesses to individual stream elements vacc : V → P({R,W}×S ×N)
with:

vacc(u, s, is, ie) = {(u, s, i)|is ≤ i ≤ ie}

Let Tτ denote the set of dynamic task instances created from the beginning of the execution of the
OpenStream program until a timestamp τ ∈ N and let T∞ be the (possibly infinite) set of tasks
created during the whole execution of the program. We further define views(t) of a task t ∈ T∞ as
the set of views of t with views(t) : T∞ → P(V). The set of stream accesses sacc(t) of a task t is the
set of accesses to individual stream elements of all of its views:

sacc(t) =
⋃

v∈views(t)

vacc(v)

The set of read and write accesses, saccR and saccW , can be defined as:

saccR(t) = {(R, s, i) ∈ sacc(t)} and saccW (t) = {(W, s, i) ∈ sacc(t)}

We define the dynamic task graph G = (T∞, E) as a graph whose vertexes represent dynamic
task instances and its weighted, directed edges E ⊂ T∞ × T∞ × N indicate producer-consumer
relationships between tasks. An edge (tp, tc, w) indicates that tp writes w bytes of data to stream

33

Chapter 3: OpenStream

(a) Tasks and views (b) Resulting dynamic task graph (c) Extended dynamic task graph

Figure 3.2: Example of a dynamic task graph

elements read by tc. Let size : S → N be a function that specifies the size in bytes of elements for
each stream. Based on the definitions above, E can be formalized as:

(tp, tc, w) ∈ E ⇔ C = {(W, sp, ip, R, sc, ic) ∈ saccW (tp)× saccR(tc)|sp = sc ∧ ip = ic}∧

w =
∑

(W,sp,ip,
R,sc,ic)∈C

size(sp) ∧ w 6= 0

Figure 3.2 shows an example of the formal definitions above. The tasks, streams and views are
shown in Figure 3.2a and the resulting dynamic task graph is given in Figure 3.2b. Assuming an
element size of one byte, the set of tasks, stream accesses of the tasks and the dynamic task graph
are:

T∞ = {t0, t1, t2, t3}
views(t0) = {(W, s0, 2, 4), (W, s1, 2, 5)}
views(t1) = {(W, s0, 5, 7)}
views(t2) = {(R, s1, 2, 5)}
views(t3) = {(R, s0, 2, 7)}

sacc(t0) = {(W, s0, 2), (W, s0, 3), (W, s0, 4), (W, s1, 2), (W, s1, 3), (W, s1, 4), (W, s1, 5)}
sacc(t1) = {(W, s0, 5), (W, s0, 6), (W, s0, 7)}
sacc(t2) = {(R, s1, 2), (R, s1, 3), (R, s1, 4), (R, s1, 5)}
sacc(t3) = {(R, s0, 2), (R, s0, 3), (R, s0, 4), (R, s0, 5), (R, s0, 6), (R, s0, 7)}

E = {(t0, t2, 4), (t0, t3, 3), (t1, t3, 3)}

Extended dynamic task graphs

The dynamic task graph as defined above contains information about the flow of data between
tasks, but does not capture information about task creation. We define the extended dynamic task
graph G∗ of a dynamic task graph G = (T∞, E) as G∗ = (T ∗∞, E,E

∗). The set of tasks T ∗∞ is the set
of tasks created during execution of the program T∞ extended with the root task r: T ∗∞ = T∞ ∪{r}.
The set of edges E∗ ⊂ T ∗∞ × T ∗∞ defines the task creations. As the control program is executed by
the root task, only r can create tasks, such that E∗ = {r} × T∞. The extended dynamic task graph
of Figure 3.2b is shown in Figure 3.2c. The sets that were not present in the dynamic task graph are:

T ∗∞ = {t0, t1, t2, t3, r}
E∗ = {(r, t0), (r, t1), (r, t2), (r, t3)}

More examples of dynamic task graphs are provided in the following section, describing the syntax
of OpenStream programs.

34

Chapter 3: OpenStream

Terminology related to task graphs

Task graphs are a cornerstone of the analysis of OpenStream applications and will be used
frequently throughout the remainder of this document. In order to be able to express certain
properties of the task graph succinctly, we define the following terms: light dependences, heavy
dependences, balanced dependences and unbalanced dependences and dependence paths.

The former two terms are defined relatively to the highest weight associated to an edge of a
dynamic task graph. In many applications analyzed in the experimental evaluation the weights
can be divided into a set of low weights and a set of high weights, where the high weights are
orders of magnitude higher than the low weights. For example, the task graph of an application
might be composed of edges with a weight of a few hundred bytes and other edges with weights of
a few hundred KiB. Edges whose weights are associated with the set of lower weights are referred
to as light dependences, while the other edges are referred to as heavy dependences.

A task that has both heavy and light input dependences is referred to as a task with unbalanced
input dependences. If a task has only heavy or only light input dependences, we say that the task
has balanced input dependences.

A dependence path in a dynamic task graph G = (T∞, E) or an extended task graph G∗ =
(T ∗∞, E,E

∗) is a path that is composed of edges from E. A path of heavy dependences only
contains edges with weights from the set of high weights and a path of light dependences only
contains edges with weights from the set of low weights. An application is said to have short
dependence paths if the number of edges on the longest path between two tasks in the task graph is
below a certain threshold, e.g., two edges. In contrast to this, an application with long dependence
paths has a task graph whose shortest paths are above a certain threshold, e.g., ten edges.

3.2 The syntax of OpenStream programs
After the introduction of the basic concepts of OpenStream, we now explain the textual rep-

resentation of an OpenStream program. Consistently with the syntax of OpenMP programs,
OpenStream uses pragmas to embed OpenStream-specific statements into a program written in the
C programming language. The OpenStream compiler translates these pragmas into appropriate
data structures and code for interaction with the OpenStream run-time. All pragmas start with
#pragma omp, followed by a more specific construct and, depending on the construct, a set of
clauses. Currently, OpenStream uses three constructs:

– the task construct creates a new task; views for stream accesses can be specified using
additional clauses as part of the construct.

– the taskwait construct creates a barrier that blocks execution until all the tasks of the
current context have terminated.

– the tick construct advances the read position of a stream after the creation of tasks with
views on the stream having a burst of zero elements.

All constructs can be embedded anywhere in the control-flow of the application, enabling the
construction of dynamic task graphs as shown before. Dynamic creation of streams is not done
using pragmas, but relies on a special attribute stream that, added to the definition of a variable,
defines the variable as a stream. In the following part of this section, we present the elements
necessary for the specification of an entire OpenStream application, starting with the declaration of
streams. The description of the general syntax is followed by a set of examples illustrating its use.

3.2.1 Declaring streams and stream references

Streams in OpenStream can be created anywhere the C99 standard [55] allows the definition
of a local variable. The syntax of a stream declaration is straightforward: as the state of a stream
is entirely managed by the run-time system, all the programmer needs to specify is the type of
the stream elements and an identifier, followed by the attribute stream, which lets the compiler
distinguish a stream declaration from the declaration of an ordinary variable:

35

Chapter 3: OpenStream

1 element_type stream_identifier __attribute__((stream));

OpenStream treats streams as first class objects and therefore also supports stream references.
A stream reference can be declared as follows:

1 element_type stream_ref_identifier __attribute__((stream_ref));

As with any other data type, it is also possible to create arrays of streams and arrays of stream
references, in which case the identifier is followed by an arbitrary expression for the size of the
array in brackets:

1 element_type stream_arr_identifier[size_expr] __attribute__((stream));
2 element_type stream_ref_arr_name[size_expr] __attribute__((stream_ref));

The following example creates a stream of floating point elements and an array of 100 streams of
characters, as well as a reference to the first stream from the array of streams:

1 /* Single stream of floating point elements */
2 float float_stream __attribute__((stream));
3

4 /* Array of 100 streams of characters */
5 char char_stream_arr[100] __attribute__((stream));
6

7 /* Reference to a stream of characters */
8 char char_stream_ref __attribute__((stream_ref));
9

10 /* Assignment of a stream reference */
11 char_stream_ref = char_stream_arr[0];

3.2.2 Declaring views

The definition of a view is syntactically split into two parts: a declaration specifying its type
and horizon and a reference in the clauses of the task construct. The clause specifies which stream
is to be accessed as well as the access type (read or write access). The syntax of a view declaration
is identical to the declaration of a statically or dynamically sized local array in C99, where the
horizon of the view corresponds to the expression that specifies the size of the array:

1 element_type view_identifier[size_expr];

For example, a view on a stream of floating point elements with a statically defined horizon of 5
elements and another view on a stream of integers with a dynamic horizon would be declared as
follows:

1 float a_view[5];
2 int another_view[2*n+3];

If only a single element needs to be accessed, the horizon can be omitted and the declaration can
be abbreviated to:

1 float a_view;

A special form of views are multi-dimensional views, which provide access to multiple streams at
once, using the same horizon. The declaration of such a view is identical to the declaration of a
multi-dimensional array:

1 element_type view_identifier[num_streams][size_expr];

If the expression specifying the number of streams is not constant, the view is called a variadic view.
The following example declares a variadic view with a variable horizon on a stream of double
precision floating point elements:

1 double view[num_streams][horizon];

36

Chapter 3: OpenStream

3.2.3 Creating tasks

The connection between views and stream elements is realized by the task construct, enabling
the dynamic creation of tasks. The views to be used by a task are specified by adding input, output,
or peek clauses to the construct. Input and output clauses provide read and write access to stream
elements, respectively. The peek clause is semantically equivalent to the input clause, but implies a
burst of zero elements. Thus, a task using the peek clause has access to the elements of the stream
according to the view’s horizon, but does not advance the read position of the stream, allowing
subsequent views to access the same elements. Task constructs without any clause create tasks that
do not access any stream and which are therefore neither producer nor consumer. The full syntax
of the task construct is:

1 #pragma omp task 〈input(stream_expr >> view_expr, ...) |
2 peek(stream_expr >> view_expr, ...) |
3 output(stream_expr << view_expr, ...) |
4 sharing_clause |
5 ... 〉
6 task_body

Sharing clauses allow the programmer to define how scalar variables declared outside the task are
accessed within the task body (e.g., a private copy per task or shared use). The stream and view
expressions define whether a single stream or multiple streams are referenced at once and whether
the burst of the view should be identical to or different from the horizon of the view’s declaration.
A stream expression can be:

– the name of a stream or a stream reference (e.g., a_stream), in which case only a single
stream is referenced and the view specified after the stream expression provides access to a
set of consecutive elements of that stream

– an array expression composed of the name of an array of streams or stream references and
an index expression in brackets (e.g., a_stream_array[num_streams-x]), also giving
access to a set of consecutive elements from a single stream as in the first case

– the name of an array of streams or stream references, providing a two-dimensional window
to the elements of a variable number of streams

Depending on the stream expression, a view expression is either:

– the name of a view, which implies a burst of only one element
– a view with an explicit, constant or variable burst (e.g., a_view[10] or a_view[2*n+3])
– a multi-dimensional or variadic view referencing several streams at once with an explicit

burst for all of the streams (e.g., a_view[num_streams][burst])

The task body can be either a single statement or a compound statement. The instructions
forming the task body are automatically outlined by the compiler into a so-called work-function
that is called when the task is executed. Besides access to stream elements through its views, a
task body is also allowed to access scalar variables from the context surrounding the task construct
using sharing clauses as defined by the OpenMP standard [24]. For input and output clauses, the
burst specified in the access clause must be identical to the horizon of the view declaration due to
restrictions from the execution model of OpenStream (cf. Section 3.4.5).

3.2.4 The tick construct

The tick construct modifies the read position of a stream without creating a task and is used
for broadcasts of stream elements to multiple views. Broadcasts are implemented in two steps.
First, the producer writing the elements to be broadcast as well as all the consumers are created in
any order using the task construct with appropriate stream access clauses. The producer uses an
ordinary output clause to obtain write access to the elements of the stream like any other producer
task not involved in a broadcast. The consumers cannot use ordinary input clauses as these would
automatically advance the stream’s read position, such that consumers would not be able to access
the same elements. Therefore, the consumers of a broadcast must use the peek clause, which

37

Chapter 3: OpenStream

a_stream

out_view in_view

(a) Stream accesses / sliding windows (b) Resulting task graph

Figure 3.3: Simple example with a single producer and a single consumer

does not advance the read position of the stream and hence allows multiple consumers to obtain
access to the same stream elements. For practical restrictions of the implementation, explained in
Section 3.4.3, the burst of the producer’s output view must match the horizon of the consumers
peeking views. The second step of a broadcast consists of a tick operation that advances the
stream’s read position. At this point, all the set of consumers of the broadcast is determined and
no further consumers can be added. The syntax of the tick construct is:

1 #pragma omp tick(stream_expr >> size_expr)

The stream expression must be either the identifier or an array expression addressing a single
stream or a single stream reference. The expression for the size specifies by how many elements the
read position is advanced and can be any expression of type size_t that matches the producer’s
burst.

3.2.5 Barriers

OpenStream offers built-in support for local barrier synchronization with the taskwait construct,
which causes the task that encounters it to be suspended until all of the tasks of the current context
have terminated. The syntax is conceivably simple:

1 #pragma omp taskwait

Barriers created with the taskwait construct are often employed at the end of the control program
to make sure that all tasks have terminated before shared resources are freed.

3.3 Examples
To illustrate the principles and the syntax above, this section provides some basic examples

with increasing complexity. The presentation starts with programs based only on input and output
views and then shows how to implement broadcasts.

Tasks with ordinary output and input views

Figure 3.3a shows the stream accesses of a very simple program with a single output view and
a single input view. A producer p writes the square roots of 0 to 5 to a stream named a_stream,
read by a consumer task c. As c is the only consumer on a_stream, the elements can be discarded
when c terminates, which makes a broadcast unnecessary.

To put into effect this behavior, both tasks need a sliding window of six elements to the same
elements of a_stream, with p accessing the elements in write mode and c accessing them in read
mode. Hence, the horizon of the input and output views must be six. As the elements are to
be discarded afterwards, the burst of the input view is also six. The following listing shows the
complete code of the example.

Listing 3.1: Single producer and single producer operating on a single stream

1 int main(int argc, char** argv)
2 {

38

Chapter 3: OpenStream

a_stream

in_viewout_view out_view

(a) Stream accesses / sliding windows (b) Resulting task graph

Figure 3.4: Two producers and a single consumer

3 float a_stream __attribute__ ((stream));
4

5 int horizon = 6;
6 float out_view[horizon];
7 float in_view[horizon];
8

9 /* Producer p */
10 #pragma omp task output(a_stream << out_view[horizon])
11 {
12 for(int i = 0; i < horizon; i++)
13 out_view[i] = sqrtf((float)i);
14 }
15

16 /* Consumer c */
17 #pragma omp task input(a_stream >> in_view[horizon])
18 {
19 for(int i = 0; i < horizon; i++)
20 printf("Read %f\n", in_view[i]);
21 }
22

23 #pragma omp taskwait
24

25 return 0;
26 }

The code starts with the declaration of the stream of floating point elements in line 3 using the
attribute stream. Lines 6 and 7 declare the views used by p and c, out_view and in_view, both
with a horizon of six elements. The producer and consumer tasks are created in lines 10 and 17,
respectively, using the task construct and appropriate clauses. Note that the task bodies reference
the variable horizon, although it was declared in the surrounding scope and no sharing clause
defines how it should be accessed. This is possible because scalar variables declared outside, but
referenced inside a task are declared firstprivate by default, meaning that the compiler creates
an individual copy of the variable for each task initialized with the value from the surrounding
context at the time of the task creation. The taskwait construct in line 23 blocks the control program
until p and c have finished. This prevents the application from ending prematurely before the
producer and consumer have executed.

Nothing in the example specifies the direct producer-consumer relationship between p and c.
The producer and the consumer just happen to operate on the same elements of the same stream
and the producer-consumer relationship is the result of the matching of the input view and the
output view on the stream. Figure 3.3b shows the dynamic task graph of this application. The
exact mechanism matching producers and consumers will be explained in section 3.4 describing
the execution model of OpenStream.

The next example adds some complexity to the previous one. Instead of a single producer
that writes all the elements at once, two producing tasks p0 and p1 each produce three of the six
elements, as illustrated in Figure 3.4a. To implement this behavior, the code from the previous
listing needs only a few adaptations:

Listing 3.2: Two producers and a single consumer operating on a single stream

1 int main(int argc, char** argv)
2 {

39

Chapter 3: OpenStream

a_stream

in_viewout_view

(a) Stream accesses / sliding windows (b) Resulting task
graph

Figure 3.5: Six producers and a single consumer operating on the same stream

3 float a_stream __attribute__ ((stream));
4

5 int horizon_out = 3;
6 float out_view[horizon_out];
7

8 int horizon_in = 6;
9 float in_view[horizon_in];

10

11 /* Producer p0 */
12 #pragma omp task output(a_stream << out_view[horizon_out])
13 {
14 for(int i = 0; i < horizon_out; i++)
15 out_view[i] = sqrtf((float)i);
16 }
17

18 /* Producer p1 */
19 #pragma omp task output(a_stream << out_view[horizon_out])
20 {
21 for(int i = horizon_out; i < 2*horizon_out; i++)
22 out_view[i] = sqrtf((float)i);
23 }
24

25 /* Consumer c */
26 #pragma omp task input(a_stream >> in_view[horizon_in])
27 {
28 for(int i = 0; i < horizon_in; i++)
29 printf("Read %f\n", in_view[i]);
30 }
31

32 #pragma omp taskwait
33

34 return 0;
35 }

Due to the different horizons of the producers and the consumer, the previous view declarations
have been replaced by declarations referencing different variables, horizon_out and horizon_
in (lines 6 and 9). The two producer tasks are created in lines 12 and 19. Although they both use
out_view in their output clauses, they do not access the same elements of the stream. In fact, the
compiler uses the declaration of a view only to determine the element type and the horizon of a
view. Within different task bodies, the same view can refer to completely different data locations.
The code of the consumer task (lines 26–30) and the rest of the code are almost identical to the
previous example. The dynamic task graph resulting from the execution is shown in Figure 3.4b.

As stated earlier, task creation can be fully embedded into the control flow of the control
program. This concept is put into practice by the next two examples creating tasks dynamically
within a for-loop. Assume that the production of stream elements needs to be parallelized further,
such as illustrated in Figure 3.5a and Figure 3.5b, where each producer task writes only a single
element of to the stream. To this end, the task construct creating a producer can simply be
embedded into the body of a for loop:

Listing 3.3: Creation of producers in a for-loop

1 float out_view;
2

3 for(int i = 0; i < 6; i++) {
4 #pragma omp task output(a_stream << out_view)

40

Chapter 3: OpenStream

in_view

streams[0]

streams[1]

streams[2]

streams[3]

streams[4]

streams[5]

out_view

...

...

...

...

...

Figure 3.6: Six producers and a single consumer operating on six streams of an array of streams

5 {
6 out_view = sqrtf((float)i);
7 }
8 }

As only one element is written per task, the output view is declared as a scalar and the output
clause uses the abbreviated syntax with an implicit burst of one element.

An alternative way to specify the behavior of the previous example is to use multiple streams,
e.g., one stream per element and to let the consumer read from all these streams at once. This is
shown in Figure 3.6: each producer pi writes a single element to a single stream streams[i]
from an array of streams named streams. The program can be written as:

Listing 3.4: Consumer using a variadic view

1 int main(int argc, char** argv)
2 {
3 float streams[6] __attribute__ ((stream));
4

5 float out_view;
6 float in_view[6][1];
7

8 for(int i = 0; i < 6; i++) {
9 /* Producers p0 ... p5 */

10 #pragma omp task output(streams[i] << out_view)
11 {
12 out_view = sqrtf((float)i);
13 }
14 }
15

16 /* Consumer c */
17 #pragma omp task input(streams >> in_view[6][1])
18 {
19 for(int i = 0; i < 6; i++)
20 printf("Read %f\n", in_view[i][0]);
21 }
22

23 #pragma omp taskwait
24

25 return 0;
26 }

Line 3 defines the array of streams with six elements. The output view of the producers in line 5
remains unchanged, but the input view, now uses a two-dimensional format. The outer dimension
specifies the number of streams that will be used by the view and the inner dimension specifies
horizon, which must be identical for all streams. Within the task body of the consumer, the input
view can be referenced like any two-dimensional array of floating point elements (line 20).

Broadcasts

Broadcasts can be implemented easily using an output view and peeking views on a stream.
In the example shown in Figure 3.7, the elements written by a single producer are read by three
consumers c0, c1 and c2. Listing 3.5 shows how the different consumers use their input data:
c0 (line 17) calculates the sum of all input elements, c1 (line 28) calculates their product and c2
(line 39) computes the sum of the squares. All consumers use the peek clause, which implies a
burst of 0 elements. The tick construct advances the read position and effectively triggers the

41

Chapter 3: OpenStream

broadcast by activating the producer task, i.e., the producer task becomes ready for execution.
Upon termination of the producer, the data is available and the consumers are ready for execution.
A detailed description of the run-time mechanisms related to broadcasts at execution time is given
in Section 3.4.3.

Listing 3.5: Multiple consumers reading the same elements

1 int main(int argc, char** argv)
2 {
3 float a_stream __attribute__ ((stream));
4

5 int horizon = 6;
6 float out_view[horizon];
7 float in_view[horizon];
8

9 /* Producer p */
10 #pragma omp task output(a_stream << out_view[horizon])
11 {
12 for(int i = 0; i < horizon; i++)
13 out_view[i] = sqrtf((float)i);
14 }
15

16 /* Consumer c0 */
17 #pragma omp task peek(a_stream >> in_view[horizon])
18 {
19 float accu = 0.0f;
20

21 for(int i = 0; i < horizon; i++)
22 accu += in_view[i];
23

24 printf("Sum: %f\n", accu);
25 }
26

27 /* Consumer c1 */
28 #pragma omp task peek(a_stream >> in_view[horizon])
29 {
30 float accu = 1.0f;
31

32 for(int i = 0; i < horizon; i++)
33 accu *= in_view[i];
34

35 printf("Product: %f\n", accu);
36 }
37

38 /* Consumer c2 */
39 #pragma omp task peek(a_stream >> in_view[horizon])
40 {
41 float accu = 1.0f;
42

43 for(int i = 0; i < horizon; i++)
44 accu += in_view[i] * in_view[i];
45

46 printf("Sum of squares: %f\n", accu);
47 }
48

49 #pragma omp tick (a_stream >> horizon)
50

51 #pragma omp taskwait
52

53 return 0;
54 }

3.4 Execution model
After the discussion of the central concepts and the syntax of OpenStream programs in the

previous sections, we give an overview of the execution model. We first explain how tasks that are
ready for execution are scheduled and executed on the different cores of the machine. We then
discuss how the run-time manages the creation of tasks and how it detects that a task is ready. This
discussion also includes the explanation of how views are associated to stream elements. Finally,
we introduce the memory management layer of the run-time based on memory pooling.

42

Chapter 3: OpenStream

a_stream

out_view in_view in_view in_view

(a) Stream accesses / sliding windows (b) Resulting
task graph

Figure 3.7: Multiple consumers reading the same elements

...

cache deque

CPU 0

Persistent
worker

cache deque

CPU 1

Persistent
worker

cache deque

CPU 2

Persistent
worker

cache deque

CPU N-1

Persistent
worker

Figure 3.8: Per-worker data structures and worker placement in OpenStream

3.4.1 Scheduling and work-stealing

One of the central components of the run-time is the scheduler, which manages the execution
of tasks that are ready. As the run-time is intended to run on massively parallel systems, the
approach used for scheduling is distributed and uses lock-free implementations of the most critical
data structures. This avoids high synchronization overhead and thus prevents the scheduler from
becoming a bottleneck for performance. In this approach, each core involved in the execution of
the application has a persistent worker thread, an ordinary POSIX thread running a scheduling
loop, which executes ready tasks on the local core independently from the other processing units.
All worker threads are created at the beginning of the execution of the application and remain
alive until its termination. By default, one persistent worker is placed on each core as shown in
Figure 3.8, but workers can be placed in any order on the cores of the machine as long as no more
than one worker executes on every core. However, the mapping of workers to cores can only be
set at the beginning and remains the same for the entire execution time.

Figure 3.8 also shows the data structures involved in the scheduling process. The first structure
is a work-stealing deque, a double ending queue that can contain an arbitrary amount of tasks ready
for execution. The second structure is a single entry software cache that can only contain up to one
single ready task at a time. When a worker activates a task, it tries to add the task to the single
entry software cache first. If the cache is empty, this operation immediately succeeds. However, if
the cache already holds a task, this task is removed from the cache and added to the work-deque in
order to leave the entry of the cache to the newly activated task. Hence, the cache always contains
the latest task activated by the worker.

When the worker finishes execution of a task, it first checks if there is a task in the software
cache and, if so, removes it from the cache and executes it. If the cache is empty, it tries to pop a task
from bottom of the work-deque. If both the cache and the deque are empty, the worker chooses
a random victim worker using a uniform distribution and tries to steal a task from the top of the
victim’s work-deque. Work-stealing is only allowed on the work-deque and the software cache

43

Chapter 3: OpenStream

Algorithm 1: scheduler_loop(w)

1 w.cached_task ← null
2

3 while true do
4 t← w.cached_task
5 w.cached_task ← null
6

7 if t = null then
8 t← pop_bottom(w.work_deque)
9 end

10

11 while t = null do
12 victim← random_worker()

t← pop_top(victim.work_deque)
13 end
14

15 execute_task(t)
16 end

Algorithm 2: add_task_locally(t, w)

1 if w.cached_task 6= null then
2 push_bottom(w.work_deque,
3 w.cached_task)
4 end
5

6 w.cached_task ← t
7

8

9

10

11

12

13

14

15

16

17

remains inaccessible to other workers than the owner.
The purpose of the software cache is thus twofold. First, as only the worker itself has access to

the cache, adding or removing a task can be accomplished without any synchronization overhead.
Second, a task in the software cache cannot be stolen by another worker, which avoids the following
situation. Let w be a worker that is currently executing a task t and let tr be the task that was last
activated by w. Assume further, that the work-queue of w was empty before tr was activated. If tr
is stolen by another worker, w runs out of work and has to steal another task after termination of t,
with atomic operations on a remote work-deque.

The work-deque is implemented using the lock-free deque proposed by Chase and Lev [37].
Tasks are put into the deque at the bottom end and can only be stolen by other workers at the top
end. The only worker that is allowed to remove a task from the bottom is the owner of the deque.
From a worker’s perspective, tasks are executed in LIFO order, favoring local execution of tasks
whose input elements have been written recently, resulting in better cache usage. In contrast to
this, task stealing occurs in FIFO order, meaning that tasks whose data is less likely to be present
in the cache hierarchy are executed remotely.

Algorithms 1 and 2 summarize the principles of scheduling presented above. Each worker
enters scheduler_loop upon its creation, which contains an infinite scheduler loop, ensuring constant
execution of tasks obtained from the local software cache, the local work-stealing deque or through
work-stealing from another worker’s work-deque. The function add_task_locally is called whenever
a worker w causes a task to become ready for execution and adds that task to the software cache.

3.4.2 Data structures

Each entity of an OpenStream program (i.e., streams, tasks and views) is associated with a data
structure in the run-time as shown in Figure 3.9. A stream is characterized by the attributes shown
in Figure 3.9a, which are:

– A list of unmatched output views on the stream (prod_queue)
– A list of unmatched or partially matched input views on the stream (cons_queue)
– The size in bytes of its elements (elem_size)
– A reference counter for garbage collection (refcount)
– A list of unmatched peeking views on the stream (peek_chain)

44

Chapter 3: OpenStream

cons_queue
prod_queue

elem_size
refcount
peek_chain

(a) Stream

next
rpos
data

horizon
burst

(b) View

buf
...

view_name ...

view_name ...

sc

(c) Frame

Figure 3.9: Major data structures of the OpenStream run-time

The list of producers, consumers and peeking consumers are initially empty when the stream
is created and the element size is initialized according to the size of elements specified in the
declaration of the stream. The initial value of the reference counter is one and is increased by one
at the creation of every stream reference referring to the stream. Views are represented by the data
structure illustrated in Figure 3.9b with the following fields:

– the horizon expressed in bytes (horizon)
– the burst expressed in bytes (burst)
– a field used for chaining of the view in a linked list (next)
– the reached position used for indexing of the data buffer and to check if the view is un-

matched, partially matched or fully matched (rpos)
– a pointer to the elements of the sliding window (data)

Note that there is no field indicating whether the view provides read or write access. This
information is kept by the compiler and passed to the run-time as a parameter upon a call to the
function that matches a view with stream elements. Horizon and burst are initialized according to
the horizon and burst of the view. The data structure of a view from a peek clause receives a burst
of zero, allowing the run-time code to recognize it as such. For all other views, burst and horizon
are identical. Upon creation, the data location of the view is unknown and hence initialized to
NULL. The reached position is set to 0, indicating that the view is unmatched, i.e., not associated to
any producer or consumer.

The last data structure presented in Figure 3.9 is the data-flow frame or frame for short and
represents a task. A frame is composed of:

– A synchronization counter sc, indicating if the task is ready for execution (sc = 0) or if it has
unmet dependences (sc > 0)

– A set of views, each identified by its respective name from the declaration of the view
– A data region buf which has enough space to store all elements of its input views

The synchronization counter of a task is initialized with a value representing the sum of the
horizons of its views, each multiplied with the size of the views’ element types.

3.4.3 Dependence management

As shown in the introduction and the examples of this chapter, producers and consumer are
matched dynamically, only based on their stream accesses. In this section, we show how this
matching is implemented by the run-time library based on the data structures presented previously.
We start with the matching of ordinary input and output views and present the same procedure
for broadcasts using peeking views afterwards.

Ordinary input and output views

When a task is created, its frame is allocated and initialized, including all the data structures for
the task’s views. Once the initialization is finished, output views are matched with consumers and
input views are matched with producers by invoking a procedure called resolve_dependences
for each view.

45

Chapter 3: OpenStream

Stream status

W
R

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream

(a) Initial state after creation of the stream

sc

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream
Stream status

WR

next
rpos
data

horizon
burst

ou
t_

vi
ew

(b) Creation of the first producer

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream
Stream status

WR

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

(c) Creation of the second producer

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream
Stream status

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

W
R

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

(d) Creation of the consumer, matching with
the first producer

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream
Stream status

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

W
R

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

(e) Matching between the second producer
and the consumer

Stream status

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

W
R

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

(f) Execution of the first producer

Stream status

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

W
R

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

(g) Update of the consumer’s synchronization
counter

Stream status

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

W
R

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

(h) Execution of the second producer

Figure 3.10: Resolution of the dependences of the tasks from listing 3.2 on page 39

46

Chapter 3: OpenStream

Stream status

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream

W
R

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

(i) Update of the consumer’s synchronization
counter

Stream status

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream

W
R

(j) After execution of the consumer

Figure 3.10: Resolution of the dependences of the tasks from listing 3.2 on page 39 (continued)

To illustrate how the different data structures are used during dependence management by
resolve_dependences, reconsider the example of listing 3.2 on page 39, in which a single
consumer reads a total of six floating point elements of four bytes produced by two tasks, each
writing three of the six elements. The entire process from the creation of the stream and the tasks
to the execution of the tasks is illustrated in Figure 3.10.

Figure 3.10a shows the state of the run-time after the creation of the stream a_stream. As
there are neither producers nor consumers yet, the corresponding chains of unmatched views,
prod_queue and cons_queue, are empty. The stream status at the upper right of the figure does
not represent an actual data structure of the run-time and only serves to illustrate the current read
and write positions as well as the contents of the stream.

Figure 3.10b shows what happens when p0 is created. As there is no consumer reading from
the stream, the output view cannot be matched with an input view yet and the data structure
representing the output view of the task is added to the stream’s queue of unmatched producers,
prod_queue. However, even though the matching is not complete, conceptually, the write
position of the stream is advanced by the burst of the view, such that subsequent producers write
the elements at positions following the elements written by p0. Note that the values for horizon
and burst in the figure are specified using bytes and not the number of elements. The pointer
next, used for chaining of unmatched views, is initialized to NULL as the output view of p0 is
currently the only unmatched view writing to the stream and thus does not have a successor in the
list. The field rpos is unused for output views in this example and can be ignored. As the data
location is currently unknown due to the incomplete matching, the field data it is initialized to
NULL. The synchronization counter of the task, sc, keeps its initial value of 12 (one unmatched
output dependence with three floating point elements of four bytes).

The next step in the example program is the creation of the second producer, p1, as shown in
Figure 3.10c. Exactly as was the case at creation of the first producer, no consumer reading from the
stream has been created so far. Hence, the output view of p1 is added to the queue of unmatched
producers using the field next of the output view of p0. Again, the write position of the stream is
advanced by the burst of the view of three elements. The remaining fields are initialized with the
same values as for the previous task.

The consumer task c is finally created in the step illustrated by Figure 3.10d. Burst and horizon
are both set to 24 bytes corresponding to the six elements specified in the declaration of the input
view of c. The buffer for the input elements is embedded into the frame, indicated by the array
of 6 elements below buf. The current write position within this array is the first element, thus,
rpos is initialized to 0 (this is not shown in the figure, since it represents the state after matching
with p0). At execution of resolve_dependences for the input view of c, the list of unmatched
producers is consulted. If this list would be empty, the input view would have been added to
cons_queue as seen for the producers and prod_queue before. However, as the list is not empty,
the first output view is removed and matched with the input view of c. This is done in several

47

Chapter 3: OpenStream

steps. First, the data pointer of the output view is set to the current write position of the input
view, which is calculated by indexing buf using the current value of rpos of the input view. The
result of the indexing operation is the base address of buf, i.e., &buf[0]. The value of rpos is
updated according to the horizon of the output view of p0, i.e., a value of 12, as shown in the figure.
Next, the synchronization counter of the producer task is updated by subtracting the burst of the
output view. The new value of 0 indicates that the task is ready for execution. The matching with
p0 is now complete. However, the reached position of the input view of c still has not reached the
horizon, such that resolve_dependences continues matching with the second output view.

The result of this process is shown in Figure 3.10e. Similar to the previous matching, the output
view of p1 is removed from the list of unmatched producers, the data pointer of the output view
of p1 set to the current write position of the input buffer and the synchronization counter of the
output view is updated accordingly. The field rpos of the output view receives the value of the
input view before the second matching, which was 12. However, in this example, this field can
be ignored for output views and is only shown in order provide a coherent description of the
matching algorithm. The reached position of the input view now matches its horizon, which
indicates that matching of this view is complete. Note that the synchronization counter of the
consumer is not updated yet, due to the fact that its input data only becomes available when the
producing tasks terminate.

Assume that p0 is executed first and finishes its execution. Figure 3.10f shows the state of the
different data structures right at termination: the input buffer of c now contains the data written by
p0. After termination of the work function of p0, the synchronization counter of c is reduced by the
burst of the output view, resulting in an updated value of 12 (cf. Figure 3.10g). When p1 executes,
the last three elements become available and the synchronization counter of c finally reaches zero,
which activates c (Figures 3.10h and 3.10i). The task eventually executes and its resources are freed,
as shown in Figure 3.10j.

Broadcasts

For the illustration of broadcasts, we show what happens during execution of the code using
peek clauses and the tick construct presented in listing 3.5 on page 42. At its creation the producer
task is entirely unaware of the broadcast and is treated like any ordinary producer whose con-
sumers have not been created, yet. This is shown in Figure 3.11a: the output view is simply added
to the list of unmatched producers just as in Figure 3.10b of the previous example. The consumers,
however, are treated differently than before. When resolve_dependences is called with an
input view with a burst of 0, i.e., a peeking view, it does not match producers and consumer directly,
but defers this action until execution reaches the tick clause. Peeking views on the same elements,
i.e., peeking views that are matched before the read position of the stream is advanced with a
tick clause, are queued using the field peek_chain of the stream, as shown in Figures 3.11b
to 3.11d. Neither the producer, nor the consumers are ready for execution during this period, as
indicated by their synchronization counters keeping their initial values of 24. When the run-time
encounters the tick clause, it resets the chain of peeking views and resolves the dependences of
the first consumer view (Figure 3.11e). The producer is removed from the chain of unmatched
output views and its data pointer is set to the first element of the buffer of the input view. The
synchronization counter of the producer reaches zero and the producer is ready to execute. At
termination of the producer in Figure 3.11f, all input elements of the first consumer have been
written, but the task remains blocked until the data has been copied to the remaining consumers
(Figure 3.11g). Upon completion of this operation, the consumers’ synchronization counters are
updated and the producer’s data structures can be freed (Figure 3.11h).

3.4.4 Allocation of data structures

There are multiple data structures involved in dependence management and scheduling of
tasks, e.g., streams and data-flow frames, presented above. Many of them need to be allocated
and freed dynamically throughout the execution of a stream application. Often they are used only
from creation of a task until its termination and can therefore have a very short lifetime, resulting

48

Chapter 3: OpenStream

Stream status

WR

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

(a) Creation of the producer task

Stream status

WR

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

(b) Creation of the first consumer

Stream status

WR

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

(c) Creation of the second consumer

Stream status

WR

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

(d) Creation of the third consumer

Stream status

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

W
R

(e) Matching of the producer and the first consumer at the
tick operation

Stream status

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

W
R

(f) Termination of the producer

Stream status

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream

sc

next
rpos
data

horizon
burst

ou
t_

vi
ew

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

W
R

copy

(g) Broadcast of the data to the remaining consumers

Stream status

cons_queue
prod_queue

elem_size
refcount
peek_chain

a_stream

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

sc

next
rpos
data

horizon
burst

in
_v

ie
w

buf

W
R

(h) Activation of the consumer tasks

Figure 3.11: Dependence resolution of broadcasts

49

Chapter 3: OpenStream

O
bj

ec
t

si
ze

Free list

Figure 3.12: Illustration of the principles of a per-worker memory pool

in frequent invocations of functions allocating and freeing memory resources. In addition, on
many-core systems with a high number of workers executing in parallel, these functions might
be called with a high degree of concurrency. To prevent memory management from becoming a
bottleneck, the run-time system must thus rely on an optimized memory allocator.

Memory pooling

Due to the parallelism within the run-time itself, resulting from the concurrent activity of
workers, a centralized memory allocator satisfying all requests would require a substantial effort
on synchronization of concurrent calls. Instead, the OpenStream run-time uses a decentralized
approach based on per-worker memory pools.

The principles of memory pooling are straightforward. The size of each data structure used by
the run-time system is assumed to be between 2smin and 2smax bytes. For each power of 2i with
i ∈ {smin, smin + 1, smin + 2, . . . , smax}, a linked list of free blocks of size 2i bytes is maintained, as
illustrated in Figure 3.12. When an allocation of size m takes place, the allocator first checks if
m > 2smax holds. If this is the case, the size of the request is too big to be handled by the memory
pool and the request is redirected to the standard C memory allocator (e.g., malloc). Form ≤ 2smax

the allocator checks whether there is a free block in the list of blocks whose size corresponds to the
next greatest power of two at least of size 2smin , i.e., 2j with 2j ≥ m ∧ @j′ : smin ≤ j′ < j. If such
a block exists, the allocator removes it from the list of free blocks and returns it as the result for
the request. If no such block is available, the allocator performs a refill operation that allocates a
contiguous chunk of memory of size M = k · sj , splits it into k equal-sized blocks, adds the first
k − 1 blocks the free list and returns the last block as the result of the request. Freeing a block
works similarly: the allocator determines the corresponding free list and adds the block at its head.
If the size of the block to free exceeds the maximum size handled by the memory pool, it forwards
the request to the standard memory allocator (e.g., free).

The main advantage of using memory pools for memory management is that almost all requests
can be carried out in constant time. The only exception are refill operations, which become less
frequent once the maximum number of blocks used simultaneously is reached. Additionally,
per-worker memory pools guarantee that the free lists are completely private and do not need to
be protected for concurrent accesses, e.g., using locks or atomic operations. Therefore, they do not
induce any synchronization overhead.

Life cycle of objects from a memory pool

The life cycle of blocks that are handled by a memory pool, i.e., objects whose size does not
exceed 2smax , resulting from the allocation scheme above has five distinct stages:

1. Allocation from the operating system due to a refill operation
2. Allocation from the free list of a memory pool
3. Exclusive use of the block by the run-time or use by the run-time and the application
4. De-allocation of the block by putting it back to a free list
5. Return of the memory of the block to the operating system

Due to the reuse of blocks when using memory pooling, stages 3 and 4 can occur an arbitrary
number of times. An important aspect of these allocations and de-allocations is that they do not
necessarily have to involve the same memory pools. For example, a data-flow frame is allocated

50

Chapter 3: OpenStream

WR

(a) Creation of the first consumer

WR

(b) Creation of the second consumer

Figure 3.13: Invalid program with bursts smaller than the horizons

WR

(a) Creation of the first consumer

W
R

(b) Creation of the second consumer

Figure 3.14: Invalid program with multiple consumers reading from the same producer

in the memory pool of the worker executing the control program, but the associated task can be
executed by any other worker. The frame could thus be freed to another memory pool than the
pool from which is was allocated.

3.4.5 Restrictions from the execution model

The presentation of the data structures and the algorithm for resolving dependences between
tasks showed that stream data is not stored in data structures directly associated to a stream, but in
input buffers located in the data-flow frames of tasks. Each structure representing a view has only
a single field, data, pointing to the first of the elements accessible through the view. An advantage
of this representation is that consecutive elements of a stream are stored at consecutive addresses
and can thus be accessed by simple indexation. However, in order to guarantee this data layout at
execution time, valid OpenStream programs are subject to a few restrictions.

Restriction 3.1 (Bursts and horizons of a view) Burst and horizon of a reading view must either be
identical or the burst must be equal to zero.

This avoids that a subset of the elements of an output view is copied to multiple input views.
Figure 3.13 shows an example of an invalid OpenStream program with an output view of six
elements and two input views having a horizon of three elements and a burst of two elements.
The result in Figure 3.13b shows that there is an element at index i+ 2, which is accessed both by
c0 and c1 and which would have to be copied to the first position of the input view of c0 and the
third position of the input view of c1.

Restriction 3.2 (Horizons of output and input views of producers and consumers) The elements
accessible through a view cannot be scattered across multiple input buffers, i.e., there cannot be any output
view whose elements are not entirely read by consumers:

∀t ∈ T∞ : ∀(W, s, is, ie) ∈ views(t) :
∀t′ ∈ T∞ : ∀(R, s, i′s, i′e) ∈ views(t′) :
([is, ie] ∩ [i′s, i

′
e] = ∅ ∨ [is, ie] ∩ [i′s, i

′
e] = [is, ie])

Note that this restriction cannot be verified by the compiler due to the dynamic matching and is
therefore checked at execution time. Figure 3.14 shows an example of an invalid program with

51

Chapter 3: OpenStream

two input views accessing elements from a single output view. As in Figure 3.13, there is one
producer writing 6 elements, but the consumers now have a burst that matches the horizon of 3
elements. However, as the data would have to be distributed onto the input buffers of c0 and c1,
this program is invalid.

Restriction 3.3 (All elements of a stream that are written must also be read) This restriction for-
bids to write any stream element that is never read. As the writer relies on the input buffer of at least one
consumer to stores its produced elements, each element written to the stream needs to be read at least once:

∀t ∈ T∞ : ∀(W, s, i) ∈ saccW (t) : ∃t′ ∈ T∞ : (R, s, i) ∈ saccR(t′)

Restriction 3.4 (Absence of unused elements between two elements that are used) As views are
matched one after another on consecutive elements of a stream, there cannot be any element between two
accessed elements that is never written:

∀s ∈ S :

(∃t, t′ ∈ T∞ : (W, s, i) ∈ saccW (t) ∧ (W, s, i′) ∈ saccW (t′) ∧ i′ > i+ 1)⇒
(∀i′′ ∈ {i+ 1, . . . , i′ − 1} : ∃t′′ ∈ T∞ : (W, s, i′′) ∈ saccW (t′′))

Note that this restriction does not need any additional verification as it results directly from the
matching algorithm presented earlier.

Restriction 3.5 (Finite number of consumers for broadcasts) As the tick construct advances the stream
at some point and triggers the broadcast operation, additional peeking views on the same stream cannot be
matched to the same producer after the tick. This mechanism effectively limits broadcasts to a finite number
of receivers.

This restriction also results directly from the matching algorithm and does not require any specific
verification.

3.5 Compilation of an OpenStream program
During compilation of an OpenStream program, it is necessary to translate the OpenStream-

specific pragmas and attributes to code that links with the OpenStream run-time library. The rest
of the code must be treated as an ordinary program written in the C programming language and
must be translated in accordance with its specification. Due to the complexity of the standard,
writing such a compiler from scratch is a large undertaking. In addition, this work has already
been accomplished in a large variety of existing C compilers, which can be used as a basis for the
development of specialized compilers. Therefore, the OpenStream compiler is implemented on
top of the GNU C Compiler version 4.7.0 [79], reusing existing compilation infrastructure 2.

The different steps involved in the compilation of an OpenStream application, including
translation of the non-specific parts are shown in Figure 3.15. The basic structure of this process
is already included in the unmodified version of GCC, but has been adapted to compilation of
OpenStream programs. The order of the steps is not strict, in particular steps 2 to 5 are tightly
coupled and executed repeatedly for each task. However, the steps can be roughly ordered as
follows:

1. During syntax analysis the parser analyzes the pre-processed input file and converts the C
statements into a tree representation called GENERIC [65]. OpenStream-specific clauses are
represented by nodes with custom types and are processed in later stages.

2. During outlining, the compiler creates a work-function for each task body.
3. In the third step, the compiler determines how much space is needed for the data-flow frame

containing the tasks metadata and its views.

2. The current version has been updated to version 4.9.0 of the compiler, but the results presented in this thesis were
obtained from an earlier branch based on version 4.7.0.

52

Chapter 3: OpenStream

Linker

.c

OpenStream GCC

.o .so

exe

Final executable

Object
files

Run-time
library

Syntax
analysis

1

Outlining

2

Generation
of the

data-flow
frame

3

Generation
of calls to

the run-time
library

4

Gimplification

5

Repeat for each task

Optimization
passes

+ back end

6

Figure 3.15: Compilation of an OpenStream program

4. Once the structure of the data-flow frame is known, the code initializing the fields and calling
the appropriate run-time functions can be generated. In particular, the space needed for the
data-flow frame is allocated by calling the allocation function of the memory pool seen in
section 3.4.4, the synchronization counter of the task is set correctly and the views’ bursts
and horizons are initialized. For each view, a call to resolve_dependences is added.

5. During gimplification, the generated code is converted into a three-address representation of
the GIMPLE intermediate representation, widely used in GCC.

6. The result of the gimplification is passed to subsequent optimization passes of GCC and the
back end, which finally generates instructions for the target architecture.

The code of the run-time is kept in a separate, shared library. Hence, to resolve the symbols
used by calls of run-time functions generated in step 4, the executable needs to be linked with the
run-time library. The actual addresses of the symbols are determined when the executable and the
run-time are loaded right before execution.

In the following example, we illustrate steps 2 to 4 on a task with two input views and an
output view. The intermediate code resulting from the translation omits details from the actual
implementation and therefore does not reflect the generated code by the real compiler. In addition,
the OpenStream compiler does not use a source-to-source approach. Thus, the generated code only
exists as an internal representation and is not exposed to the environment. However, the simplified
code illustrates the concepts of how the compiler translates OpenStream code into generic C code
making use of the run-time library.

Listing 3.6: Example code to be translated by the compiler

1 void stream_function(void)
2 {
3 ...
4 int horizon = 10;
5 int out_view[horizon];
6 float in_view_f[horizon];
7 double in_view_d[horizon];
8

9 #pragma omp task input(fstream >> in_view_f[horizon], \
10 dstream >> in_view_d[horizon]) \
11 output(istream << out_view[horizon])
12 {
13 for(int i = 0; i < horizon; i++)
14 out_view[i] = (int)round(in_view_f[i]*in_view_d[i]);
15 }
16 ...
17 }

The general lines of the code generated from listing 3.6 are represented by the listing below.

Listing 3.7: General lines of the code generated by the compiler

1 struct frame_1 {
2 size_t sc;
3 int horizon;
4 struct view in_view_f;
5 struct view in_view_d;
6 struct view out_view;
7 void (*work_fn)(void*);
8 char buf[];

53

Chapter 3: OpenStream

9 };
10

11 void work_function_1(struct frame_1* fp)
12 {
13 for(int i = 0; i < fp->horizon; i++)
14 ((int*)fp->out_view.data)[i] = (int)round(((float*)fp->in_view_f.data)[i] *
15 ((double*)fp->in_view_d.data)[i]));
16

17 tdecrease(fp->out_view.owner, fp->out_view.horizon);
18 tend(fp);
19 }
20

21 void stream_function(void)
22 {
23 ...
24

25 int horizon = 10;
26

27 int out_view[horizon];
28 float in_view_f[horizon];
29 double in_view_d[horizon];
30

31 size_t frame_size = sizeof(struct frame_1) +
32 horizon*sizeof(float) +
33 horizon*sizeof(double);
34

35 struct frame_1* fp = tcreate(frame_size);
36

37 fp->work_fn = work_function_1;
38 fp->sc = horizon*sizeof(float) + horizon*sizeof(double) + horizon*sizeof(int);
39 fp->horizon = horizon;
40

41 fp->in_view_f.horizon = horizon*sizeof(float);
42 fp->in_view_f.burst = horizon*sizeof(float);
43 fp->in_view_f.next = NULL;
44 fp->in_view_f.rpos = 0;
45 fp->in_view_f.owner = fp;
46 fp->in_view_f.data = &fp->buf[0];
47

48 fp->in_view_d.horizon = horizon*sizeof(double);
49 fp->in_view_d.burst = horizon*sizeof(double);
50 fp->in_view_d.next = NULL;
51 fp->in_view_d.rpos = 0;
52 fp->in_view_d.owner = fp;
53 fp->in_view_d.data = &fp->buf[horizon*sizeof(float)];
54

55 fp->out_view.horizon = horizon*sizeof(int);
56 fp->out_view.burst = horizon*sizeof(int);
57 fp->out_view.next = NULL;
58 fp->out_view.rpos = 0;
59 fp->out_view.owner = NULL;
60 fp->out_view.data = NULL;
61

62 resolve_dependences(&fp->in_view_f, true);
63 resolve_dependences(&fp->in_view_d, true);
64 resolve_dependences(&fp->out_view, false);
65

66 ...
67 }

Lines 1 to 9 show the definition of the structure of the data-flow frame of the task. Each task created
dynamically at execution time from the task construct upon a call to stream_function will be
represented by an instance of this data structure. The definition of the structure specifies fields
that are common to all tasks as well as fields that are specific to the task construct for which the
structure was generated. The common fields are the synchronization counter sc, a pointer to the
work function containing the instructions of the task body work_fn and a field buf that provides
access to the input data of the task. Note that the size of buf is not specified as the size of input
data is known earliest at task creation (cf. line 35). The task-specific fields are the views in_view_
f, in_view_d and out_view and a field for the local variable horizon of stream_function.

The outlined task body is represented by the work function defined in lines 11 to 19. The data
structure representing the task, i.e., the data-flow frame is passed as an argument to the function
and the statements inside the function only reference fields from the data-flow frame. This also
applies to the local variable horizon of stream_function, whose access has been replaced

54

Chapter 3: OpenStream

with an access to fp->horizon in line 13.
Task creation takes place in the original function at line 35. The function responsible for task

creation is tcreate and takes the size of the frame as an argument. This size is calculated from
the size of the data structure representing the task and the amount of memory that is needed to
store the task’s input data in line 33. The allocation of the frame is carried out by the run-time
during execution of tcreate and uses a memory pool. Hence, the code of stream_function
does not directly call the allocator, but only assigns the return value of tcreate to fp.

The different fields of the data-flow frame are affected in lines 37 to 60. These are the fields
containing metadata of the task itself, as well as the fields of the task’s views. The fields of the
views named owner point to the data-flow frame which embeds the elements of their sliding
windows. For input views, the owner is always the frame containing the view and for output
views this is the frame that contains the input view that was matched with the output view. The
pointer is primarily used to find the correct data-flow frame when a synchronization counter needs
to be decremented, such as in line 17 where the synchronization counter of the task’s consumer is
updated.

The code finishes with calls to resolve_dependences for every view in lines 62 to 64. The
second parameter of this function indicates whether the call is issued for an input view (true) or
for an output view (false).

3.6 Summary
In this chapter, we introduced OpenStream, a data-flow extension to OpenMP with support

from streams and lightweight tasks. We showed the concepts of stream accesses using views and
explained how a dynamic task graph can be derived from these accesses. The syntax of OpenStream
programs was presented and illustrated with multiple examples. Moreover, we introduced the
central data structures and procedures of the run-time in the discussion of the OpenStream
execution model. We gave an overview of the steps of the compilation of an OpenStream program
and outlined the generated code of an example.

OpenStream is a state-of-the-art language extension for task-parallel applications whose imple-
mentation enables the development of high performance applications [72]. Although the specific
concepts of stream accesses using views and matching of producers and consumers are unique
to OpenStream, the concept of specifying point-to-point data dependences between tasks is a
trend for task-parallel languages in general [25, 70]. The implementation of our approaches for
optimized scheduling and data placement presented in Chapter 7 and 8 and the implementation of
our optimizations for broadcasts in Chapter 9 are tightly coupled with the OpenStream run-time
and the OpenStream compiler. However, the concepts only rely on information on point-to-point
data dependences between tasks and thus apply to other task-parallel languages as well.

Many of our concepts have been merged into the official distribution of OpenStream. As these
apply to the run-time system, the majority of our contributions to the codebase are modifications
of the OpenStream run-time. These are not only modifications that implement specific algorithms
for scheduling and data placement, but also important changes to the technical infrastructure
of the run-time, such as the interaction with the operating system, the addition of profiling
support or NUMA-specific modifications of the run-time code. Some of the modifications also
required changes in the OpenStream compiler or changes at the language level. Furthermore,
the experimental evaluation of this thesis has lead to the development of multiple benchmarking
applications, which have become part of the official distribution.

The next chapter presents changes to the run-time and execution model that enable efficient
support for NUMA. In particular, we analyze the major issues of the NUMA-unaware strategy for
memory allocation and propose concepts that solve these problems and support NUMA-aware
scheduling and memory allocation.

55

Chapter 3: OpenStream

56

4 A NUMA-aware run-time and
execution model

The common requirement of techniques for NUMA-aware scheduling for task-parallel applica-
tions is that the placement of data structures involved in the execution of a task can be determined
accurately within the run-time. NUMA-aware allocation is based on the ability of the run-time sys-
tem to place data structures on specific nodes. Due to the short execution time of fine-grained tasks,
this functionality is needed frequently throughout the execution of a task-parallel application and
must thus be provided with low overhead. However, as data placement results from interactions
between the task-parallel application, the operating system and the hardware at execution time,
support for NUMA by the run-time cannot be implemented independently and must be integrated
carefully into the embedding context. This requires a detailed understanding of all events that
determine data placement and demands efficient use of the interface to collect information on the
distribution of data provided by the operating system.

The goal of this chapter is to point out how the OpenStream run-time system can provide
efficient infrastructure to support NUMA-aware scheduling and NUMA-aware allocation. The first
part of the chapter explains which software and hardware components are involved in memory
allocation and data placement from the perspective of the operating system. We show which events
at execution time determine the placement on the different NUMA nodes of the machine and at
which moment the placement takes place. We then discuss the influence of these mechanisms on
the placement of data structures managed by an allocation mechanism based on memory pools,
such as the allocator presented in the previous chapter. From this detailed understanding of the
interactions, we conclude which changes must be applied to the OpenStream run-time system
and which restrictions must be imposed on streaming applications in order to implement efficient
and accurate NUMA-aware memory pooling. The resulting mechanisms allow the run-time to
determine the location of structures and enable per-structure data placement with low overhead as
a result of reduced interaction between the run-time and the operating system. The techniques
form the basis of the solutions for NUMA-aware scheduling and NUMA-aware memory allocation
presented in Chapter 7 and 8.

4.1 Memory allocation and data placement by the operating sys-
tem

Modern general-purpose computing systems implement the concepts of virtual memory and
paging. In this model, each user space process has its own, private space of virtual addresses,
which is mapped to physical addresses by the memory management unit (MMU) using a translation

Chapter 4: A NUMA-aware run-time and execution model

table managed by the operating system. Both virtual and physical memory are organized in
pages, representing fixed-size intervals of the address space. The mapping from virtual to physical
addresses is implemented with page granularity, i.e., the set of subsequent addresses of a page in
virtual memory is mapped to a set of subsequent addresses of a physical page. The table defining
the mapping between virtual and physical addresses is therefore referred to as the page table.
Memory protection defines which types of accesses to memory are authorized (e.g., read-only mode
that disallows write accesses, read and write mode without execution protection to prevent data
from being interpreted as instructions, etc.). The protection can be configured individually for
each page by setting flags for the corresponding entry of the page table. Illegal access to a page is
detected by the hardware and results in an exception that is handled by the operating system.

4.1.1 Logical and physical memory allocation

Additional memory can be allocated by a user space process through a system call, usually
wrapped by a function of a user space system library, such as malloc from the standard C library.
The return value of the function call is a virtual address that points to a new region of memory
that can be used by the process immediately. From the perspective of a process, memory allocation
is thus an atomic operation and only involves a single system call. From the perspective of the
operating system, however, additional memory is attributed to a process in two steps which we
refer to as logical allocation and physical allocation.

Logical allocation is initiated by the system call issued by the process and causes the operating
system to modify the page table, such that additional pages of virtual memory become accessible.
The corresponding entries are set to point to the so-called zero-page and memory protection is
configured to forbid write accesses to addresses associated to these pages. Although only the page
table is modified and no additional physical memory is allocated, it appears to the process that
additional memory becomes accessible upon return from the system call. Read access to the new
virtual pages result in read accesses to the zero page and thus yield zero values as expected from a
newly allocated memory region. However, as write accesses alter values in memory, they cannot
be redirected to the zero page and require new pages of physical memory to be assigned to the
process. This is done upon physical allocation and without notification of the process as explained
below.

Due to the write protection configured during logical allocation, the first write access to a newly
allocated page generates an exception. During exception handling by the operating system, an
unused page of physical memory is selected and initialized with zeros. Afterwards, the entry in
the page table is modified to point to the new physical page and the flags are changed to authorize
write access. At the end of exception handling, control is transferred back to the application and
the write access is repeated. As write access has been authorized during physical allocation, the
repeated write access as well as subsequent accesses to the same page succeed without generating
an exception.

Memory regions can be composed of multiple pages and it might thus be required that physical
allocation is carried out multiple times. Hence, memory allocation from the perspective of the
operating system is not an atomic operation, but can be distributed over a longer period of time
depending on the timing of write accesses.

Figure 4.1 illustrates logical and physical allocation on a simple example in which a process
requests three additional pages of memory. Note that in practice, the page table is not a flat table
like the page table shown in the figure, but a hierarchical structure with multiple levels. However,
for simplicity we illustrate memory allocation with a page table that has only a single level. The
initial mapping is shown in Figure 4.1a, where a set of valid entries in the page table points to
pages that are accessible both in read and write mode, while another set of unused entries shown
at the bottom indicates that a part of the virtual address space cannot be accessed. At logical
allocation, the entries of the page table corresponding to the unused region of virtual memory are
modified, such that they point to the zero page and write protection is activated by setting the
appropriate flags (Figure 4.1b). The first write to a page of the newly assigned region causes an
exception (Figure 4.1c) and initiates triggers reservation of a previously unused physical page by

58

Chapter 4: A NUMA-aware run-time and execution model

Physical
memory

Zero page

Virtual
memory

Page
table

Unused
region
Unused
region

rw

rw

(a) Mapping before logical
allocation

Physical
memory

Zero page

Virtual
memory

Page
table

ro

ro

ro

rw

rw

(b) Logical allocation of three
additional pages

Physical
memory

Zero page

Virtual
memory

Page
table

Write

ro

ro

ro

rw

rw

Exception

(c) Write access generating an
exception

Physical
memory

Zero page

Virtual
memory

Page
table

copyro

ro

ro

rw

rw

(d) Initialization of an unused page in
physical memory

Physical
memory

Zero page

Virtual
memory

Page
table

ro

rw

ro

rw

rw

(e) Update of the page table

Figure 4.1: Logical and physical allocation

the operating system. This page is then initialized with zeros by copying the contents of the zero
page to it (Figure 4.1d). Finally, the corresponding entry in the page table is updated and the flags
of the entry are modified to allow read and write accesses (Figure 4.1e).

The main advantage of the separation of physical and logical allocation is a reduced memory
footprint for processes that demand large amounts of memory, but which use memory only
sparsely. Furthermore, the initialization of newly allocated memory can be distributed over time,
which avoids that the execution of the allocating process is interrupted for a long duration at
allocation time.

4.1.2 Page placement

On systems with non-uniform memory access, physical pages can be selected from multiple
memory controllers at physical allocation. Which of the controllers is chosen depends on the
placement strategy employed by the operating system. A common default placement strategy is
first-touch placement that selects a page from the local memory of the core that executed the write
instruction triggering physical allocation. Pages from remote nodes are only selected if all pages of
the local node are already in use.

The placement resulting from first-touch allocation leads to a high fraction of local memory
accesses if memory regions are initialized and accessed by cores from the same node. Sequential,
independent processes, for example, display this behavior and thus benefit from this placement
strategy. Also, if logical allocation is carried out on one node and write accesses are performed on
a different node, first-touch placement increases data locality as it delays placement to the moment
where the location of data accesses is known. However, for parallel applications with dynamic
access patterns, first-touch placement does not necessarily provide adequate results for locality.
An extreme case are applications that initialize data structures sequentially at the beginning of the
execution and then process data in parallel. In this scenario, first-touch placement causes all data
to be stored on the memory controller of the initializing node, which results in high contention
and remote memory accesses in the parallel phase.

To give a process accurate control over page placement, operating systems usually provide
system calls that allow processes to specify from which node the physical pages should be selected
for a region of virtual memory (e.g., mbind provided by LIBNUMA [58] on Linux systems). These
system calls are employed for two patterns of page placement: allocation on a single node and

59

Chapter 4: A NUMA-aware run-time and execution model

Virtual
memory

Page
table

ro

rw

ro

rw

rw

Node 0

Zero page

Node 1 Node 2
Physical memory

...

Figure 4.2: Example of the distribution of data on three NUMA nodes

interleaved allocation on multiple nodes. The former places all physical pages of a memory region
on a single node and is particularly useful if the cores and thus the nodes accessing the memory
region are known in advance. The latter uses a list of nodes on which physical pages are allocated
in a round-robin fashion. Data is thus distributed evenly over multiple nodes, which enables
exploitation of the overall bandwidth of multiple memory controllers and avoids contention on
a single node. However, the distribution may increase the average latency of accesses as the
likelihood of remote accesses increases with every additional node included in the interleaving.

4.1.3 Determining the location of data

Due to the first-touch allocation scheme, an application does not have a-priori knowledge
about data placement, unless it specifies the distribution of data before physical allocation or
unless it schedules the instructions initializing a memory region for execution on specific cores. To
determine where the data of a memory region is located after physical allocation without specific
placement and without detailed tracking of write accesses, the application must thus query the
operating system explicitly through a system call, such as the move_pages system call of the
Linux kernel 1. This system call takes a list of virtual addresses and returns for each address on
which node the page covering the address is located. For addresses whose associated pages have
not been allocated physically prior to the call, the system call returns values indicating that the
placement could not be determined.

Figure 4.2 shows an example for the distribution of data on three NUMA nodes. To determine
the placement of the pages p0 to p4, the process passes pointers to two tables to move_pages. The
first table has one entry for each page and contains the virtual addresses of the pages. The second
table receives the results for the placement and is filled in by the system call. As p0, p1 and p3 have
been allocated physically, the table for the results contains the identifiers of the respective NUMA
nodes at positions 0, 1 and 3. For the pages that have not been placed, i.e., p2 and p4, the table
contains negative values. The contents of the table are thus 1,, 2, −1, 0 and −1.

4.1.4 Implications of the size of pages

Modern hardware platforms provide large amounts of main memory ranging from a few MiB
on embedded systems to several hundred GiB on high performance servers. Traditionally, many
hardware platforms and operating systems only provided support for a single page size of a few
KiB, e.g., 4KiB on older x86 platforms. The gap between the small page size and the large size
of contiguous chunks of memory that can be allocated by an application leads to a high number
of entries in the page table. The translation lookaside buffer (TLB), which caches these entries, has
only a limited capacity. A translation from a virtual to a physical address that misses the TLB
causes the hardware to fetch the entry of the page table that is needed for the translation from
main memory. This additional access to memory takes a certain amount of time to complete and
slows down execution. Large page tables may result in frequent misses of the TLB and can thus
decrease performance significantly.

1. Linux uses the same system call to obtain information about page placement and to migrate pages between nodes,
hence the name move_pages.

60

Chapter 4: A NUMA-aware run-time and execution model

malloc called during refill

chunk

split operation during refill

block block block
allocation from
memory pool

data structure

free to
memory pool

Free list of a
memory pool

Figure 4.3: Illustration of the terms used for memory regions managed by memory pools

In order to reduce the number of entries in the page table and thus to decrease the likelihood of
misses, modern platforms are able to handle larger pages. For example, on x86_64 platforms, the
Linux kernel is able to handle pages of 4KiB, 2MiB and 1GiB. Recent versions of the kernel inte-
grate so-called transparent huge page support [42], where the kernel tries to allocate huge pages upon
physical allocation transparently, without explicit requests for huge pages from the application.

However, while huge pages can reduce the number of TLB misses, they increase the granularity
of physical allocations and data placement. With small pages, physical allocation occurs frequently,
but each time only a small portion of memory is allocated physically. Huge pages reduce the
frequency, but increase the amount of memory that is allocated. Even a small modification can thus
cause a large amount of memory to be allocated physically and to be placed on a NUMA node.

In the following section, we discuss the consequences of first-touch placement and the page
size on memory pooling.

4.2 The influence of first-touch placement and the page size on
memory pooling

In this section, we show how the mechanisms for first-touch placement presented in the
previous section influence how and when blocks managed by memory pools are placed on NUMA
nodes. We start by examining the influence on refill operations and consider placement during
the use of a block afterwards. Implications on the reuse of blocks are pointed out at the end of
the section. For a clear distinction between memory regions obtained from the operating system,
memory regions managed by memory pools and memory regions actually used by the run-time
system and the application we use the following terminology:

– a chunk of memory refers to a memory region that has been allocated from the operating
system (e.g., by calling malloc). Chunks are allocated and are divided into smaller regions
during refill operations (as explained in Section 3.4.4).

– a block is a memory region resulting from a split operation on a chunk during a refill. As
mentioned in Section 3.4.4, the size of a block is always a power of two. Blocks are chained
in free lists of memory pools and are handed to the run-time upon allocation from a memory
pool.

– a data structure refers to a memory region that is used to store an entity of the run-time or the
application (e.g., a data-flow frame or a stream). The memory region of a data structure is a
subset of the block that was allocated for the data structure, starting at the first address of the
block.

The relationship between these terms is illustrated in Figure 4.3.

4.2.1 Page placement during refills

At allocation of a data structure from a memory pool, the allocation function first checks if the
list of free blocks corresponding to the size of the structure is empty. If the list is not empty, the
first block is removed from the list and returned as the result of the allocation. However, if the
list is empty, the memory pool performs a refill operation in order to populate the list with new

61

Chapter 4: A NUMA-aware run-time and execution model

1. Refill

2. Split

3. First chaining

4. Second chaining

(a) SB > SP (b) SB = SP (c) SB < SP

Figure 4.4: Physical allocation upon a refill of a free list

blocks. During a refill, a memory chunk of a configurable size (e.g., 2MiB) is allocated logically
from the operating system and is split into blocks that correspond to the block size of the free list
that is to be refilled. The chain of blocks is realized by using a small portion of memory at the
beginning of each block to store the address of the next block in the chain. Hence, the first write
access to a block takes place immediately during the refill, but only affects a very small amount of
the block’s memory. However, depending on the page size used by the system and the size of the
block, this determines either the placement of a portion of the block, the placement of the entire
block or placement of the block as well as following blocks at subsequent addresses.

Figure 4.4 illustrates these three cases. The bar at the top of each figure (step 1, labeled Refill)
represents the chunk of memory allocated from the operating system, which is split into blocks
afterwards. The individual blocks resulting from the split are shown below the chunk (step 2,
labeled Split). The last two lines (step 1, labeled First chaining and Second chaining) show the
placement of pages after the chaining of the first block and the second block, respectively. Question
marks in the figure indicate that the respective page has not been allocated physically and that its
placement is thus unknown.

In Figure 4.4a the block size SB is greater than the page size SP . The chaining of each block
only causes physical allocation and thus placement of the first page of each block. Hence, the
resulting chain for the free list consists of blocks for which the placement of the majority of the
pages still remains to be determined. Figure 4.4b shows the same steps for an equal size of pages
and blocks. At each chaining, the entire block is allocated physically and the resulting chain only
contains blocks that have been placed entirely. The last case is presented in Figure 4.4b, where a
single page contains multiple blocks. The chaining of a block thus causes the current block as well
as following blocks to be allocated physically. As in the previous scenario, this leads to a chain of
placed blocks.

In summary, allocation from a free list after a refill operation either yields a block that has
already been allocated physically or a block whose first page has been placed, but whose remaining
pages have only been allocated logically. Which percentage of a block the unplaced pages represent
in the latter case depends on the block size and the size of pages. Figure 4.5 illustrates three
different cases. In the first case shown in Figure 4.5a, the block is composed of only two pages, such
that 50% of the block are placed after a refill. In the second case (Figure 4.5b) the block composed
of four pages, such that 25% are placed and in the last case (Figure 4.5c) a block of consists of eight
pages with 12.5% of placed data.

The typical sizes of data structures present in the run-time when running the applications used
for experimental evaluation presented in Section 6.1 can be divided into two classes. The first class
consists of small structures of a few bytes up to a few KiB. These are mainly small data-flow frames
and other small entities, such as the instances of structures representing streams. The second
class represents large structures of several hundred KiB and is composed exclusively of data-flow
frames. The size of pages on our test systems described in Section 6.3 is selected transparently by
the operating system through transparent huge page support and is either 4KiB or 2MiB. The
size of small structures is thus close to the minimal page size and the blocks used for the small
structures are almost always allocated physically entirely after a refill, independently from the

62

Chapter 4: A NUMA-aware run-time and execution model

(a) 50% placed (b) 25% placed (c) 12.5% placed

Figure 4.5: Different amounts of placed data after a refill for blocks larger than a page

actual page size. In contrast to this, the status of the placement of a large structure after a refill
depends on the size of a page. For small pages only a very small portion of a structure is allocated
physically and new structures can be considered as entirely unplaced. When using huge pages,
however, the size of a large structure is below or equal to the size of a page and new structures are
placed entirely.

Hence, intermediate cases with the same amount of placed and unplaced data as in Figure 4.5a
do not appear in practice and all structures can be considered as either entirely placed or entirely
unplaced. In addition, as only large structures can be unplaced after a refill and as all large
structures are frames, unplaced structures are always data-flow-frames. In the following part, we
examine the different possible scenarios for page placement of unplaced data-flow frames during
their first use. This applies only to frames whose size is significantly higher than the size of a page
as this is the only scenario in which a frame can be unplaced right after a refill.

4.2.2 Placement at the first use of data structures

The first write accesses to a data-flow frame occur when the producers of the task associated to
the frame write data to the task’s input views. Depending on the number of producers, the amount
of input data they provide and where they execute, two scenarios for the placement of the frame’s
pages are possible.

In the first scenario, all pages of the data-flow frame are placed on a single node. This happens
if all producers are executed by workers of the same node. The lower the number of producers of
a task, the higher the probability that all of them are executed on the same node. For tasks with
only a single producer, the data-flow frame is guaranteed to be placed on a single node. Also,
for highly unbalanced dependences, the outcome for data placement is similar as the majority of
the pages is written by one worker and the frame can be considered as being placed on a single
node. Figure 4.6a shows such a task graph, in which one producer pa writes a single page of input
data, while another producer pb writes 15 pages of the input data of a task c. Assuming that pa is
executed by a worker wa that operates on node na and pb is executed by a worker on node nb, the
resulting distribution corresponds to the placement shown in Figure 4.6b.

In the second scenario, pages of the data-flow frame are scattered across multiple nodes. This
is the case if the task associated to the frame depends on several producers which are executed on
different nodes. The number of nodes is that contain the frame’s pages is limited by the number
nodes of the system and the number of producers. The reason for the limitation by the number
of producers is that task execute from beginning to end on a single core and thus on a single
node 2. Figure 4.6c shows a task graph with balanced dependences between three producers pa, pb
and pc and a consumer c. The producers are executed by workers wa, wb and wc and, similar to
the previous example, these workers operate on different nodes na, nb and nc. A possible page
placement resulting from this situation is given in Figure 4.6d. The actual order of the regions
belonging to na, nb and nc within the frame can depend on the number of input views of c, the
order of the matching of the views of c, pa, pb and pc and the number of streams that are involved
in the matching. If c has only a single input view, as in Figure 4.7a, and if the views provide
access to elements of the same stream, the order of the memory regions depends on the order of
calls to resolve_dependences for the output views of pa, pb and pc. For example, if the call to
resolve_dependences for pb is issued before the call for pa and if the call for pc is issued after
the call for pa, then the order of the regions on different nodes is nb, na, nc instead of the order

2. The only exception to this rule are tasks whose execution is interrupted by a taskwait and which are resumed on a
different core. However, OpenStream applications use barriers only rarely, e.g., towards the end of the execution of the
application, such that task migration can be neglected.

63

Chapter 4: A NUMA-aware run-time and execution model

(a) Task graph with unbalanced dependences (b) Placement of the majority of the frame’s pages on a
single node

(c) Task graph with balanced dependences (d) Even distribution of the frame

Figure 4.6: Balanced and unbalanced dependences leading to different distributions of the pages of a frame

(a) One input view and three
output views

(b) Three output views and three
input views on the same
stream

(c) Three output views and
three input views on
different stream

Figure 4.7: Different relationships between output and input views with different implications on the order
of the scattering of a view

na, nb, nc given in Figure 4.6d. In Figure 4.7a, c has three input views which provide access to
elements on the same stream. In this case, the order of the memory region depends on the order of
calls to resolve_dependences of the output views as well as the order of the calls for the input
views. However, the latter is defined statically during translation by the OpenStream compiler as
described in Section 3.5 and depends on the order of the input clauses in the source code. Finally,
it is also possible that c has three input views that provide access to elements of three different
streams as shown in Figure 4.7c. In this scenario the order of the memory regions only depends on
the order of the input clauses.

4.2.3 Reuse of data structures

At the end of the execution of a task, its data-flow frame is freed by the worker that executed
it. This consists of handing the frame back to the memory pool of the worker and adding the
embedding block to the appropriate free list. Depending on the placement of the pages of frames
that have already been freed by the worker before and the blocks resulting from earlier refills, the
memory pool can thus contain a composition of (a) blocks whose pages are placed on the same
node as the worker associated to the memory pool (b) blocks whose pages are placed on a remote
node (c) blocks whose pages are scattered across multiple nodes and (d) blocks whose pages are
not allocated physically. Subsequent allocations reuse these blocks, e.g., allocations of data-flow
frames for new tasks. As the allocator always returns the block that was added last to a free list
and as the blocks within the list are not sorted by their placement, the pages of the block that is
returned for an allocation can be placed in any of the aforementioned ways.

Hence, by using first-touch placement in conjunction with memory pooling, the run-time does
not have any direct control over the placement of data. However, NUMA-aware allocation and
NUMA-aware scheduling rely on fine-grained control over the placement of data and are thus

64

Chapter 4: A NUMA-aware run-time and execution model

difficult to implement with the mechanisms for memory management above. In the following
part, we propose two techniques that address this problem. The first technique avoids scattering
of blocks on multiple nodes by separating buffers for input data from frames and by imposing
a restriction on the use of streams by an application. The second technique combines per-node
memory pools with an efficient mechanism to detect the placement of blocks and avoids the
presence of remotely placed blocks in memory pools.

4.3 Separation of frames and input buffers
The main circumstance that leads to scattered frames is that the input data written by multiple

producers is combined in a contiguous region of virtual memory embedded into a single data
structure, namely the data-flow frame. Figure 4.8a provides a detailed view of the run-time
structures after the matching of views for the task graph with balanced dependences of Figure 4.6c.
The data pointers of the producers’ output views point to the data region of the input view of c,
which is embedded into the data-flow frame of c. Hence, the actual scattering affects the pages of
this data region.

4.3.1 Avoiding the scattering of input data across multiple nodes

If each producer targeted a different data structure, there would be only one writer per structure
and every structure could only be placed on a single node. Hence, to avoid scattered data-
flow frames, the buffers for input data of a task should be separated from the data-flow frame.
Figure 4.8b shows the same matching of views as before, but with separate memory regions for
each of the input views of c. Each data pointer of the output views now points to the base of
a distinct data structure and thus prevents that more than one producer writes to a contiguous
memory region. In the remainder of the thesis, we refer to these structures as input buffers. The
different input buffers of a task can potentially be located on a different node, but if employed
correctly as described below, each input buffer is entirely placed on a single node, i.e. none of the
input buffers can be scattered across multiple nodes.

However, even if each input view of a task has its own input buffer, it is still possible that the
data of an input view is provided by multiple producers. This happens if multiple output views
with a smaller burst are matched with a single input view with a larger horizon as in the code
example below:

Listing 4.1: Multiple producers writing to the same input buffer

1 float a_stream __attribute__ ((stream));
2

3 int horizon_in = 6 * DELTA;
4 int horizon_out = 2 * DELTA;
5 float out_view[horizon_out];
6 float in_view[horizon_in];
7

8 for(int i = 0; i < 3; i++) {
9 /* Producer */

10 #pragma omp task output(a_stream << out_view[horizon_out])
11 {
12 for(int i = 0; i < horizon_out; i++)
13 out_view[i] = some_function(i);
14 }
15 }
16

17 /* Consumer */
18 #pragma omp task input(a_stream >> in_view[horizon_in])
19 {
20 for(int i = 0; i < horizon_in; i++)
21 printf("Read %f\n", in_view[i]);
22 }
23

24 #pragma omp taskwait

Figure 4.9 shows the run-time structures after matching of views in that situation. Due to the
addressing scheme for data of input views, which is identical to indexation of an array, input

65

Chapter 4: A NUMA-aware run-time and execution model

next
rpos

horizon
burst

in
_v

ie
w

1

next
rpos
data

horizon
burst

in
_v

ie
w

2

next
rpos
data

horizon
burst

in
_v

ie
w

3

data

next
rpos

horizon
burst

ou
t_

vi
ew

next
rpos

horizon
burst

ou
t_

vi
ew

next
rpos

horizon
burst

ou
t_

vi
ew

data data

data

(a) Buffers integrated into a frame

next
rpos

horizon
burst

in
_v

ie
w

1

next
rpos
data

horizon
burst

in
_v

ie
w

2

next
rpos
data

horizon
burst

in
_v

ie
w

3

data

next
rpos

horizon
burst

ou
t_

vi
ew

next
rpos

horizon
burst

ou
t_

vi
ew

next
rpos

horizon
burst

ou
t_

vi
ew

data data

data

(b) Separate data structures for frames and input buffers

Figure 4.8: Separation of input buffers from data-flow frames

data of a single view must be stored in a contiguous region of memory and cannot be split across
multiple objects. The only way to avoid situations in which multiple producers write to a single
input view is to impose a restriction on programs that forces the burst and the horizon of matched
views to be identical.

Restriction 4.1 (One-to-one matching of input and output views) To avoid that multiple output views
provide write access to elements to which a single input view provides read access, the burst of each output
view must be identical to the horizon of the matched input view:

∀t ∈ T∞ : ∀(W, s, is, ie) ∈ views(t) :
∀t′ ∈ T∞ : ∀(R, s, i′s, i′e) ∈ views(t′) :
([is, ie] ∩ [i′s, i

′
e] = ∅ ∨ [is, ie] = [i′s, i

′
e])

This ensures that each input buffer has a unique writer and thus makes it impossible that an input
buffer is scattered across multiple nodes due to write accesses to output views.

66

Chapter 4: A NUMA-aware run-time and execution model

next
rpos

horizon
burst

ou
t_

vi
ew

data

next
rpos

horizon
burst

ou
t_

vi
ew

data

next
rpos

horizon
burst

ou
t_

vi
ew

data

next
rpos

horizon
burst

in
_v

ie
w

data

Figure 4.9: Multiple writers of an input view with input buffers separated from data-flow frames

4.3.2 Integration into the compiler

The separation of input buffers from data-flow frames does not only imply changes to the
run-time, but also requires a modification of the compiler. In the default scheme for code generation
for input data embedded into data-flow frames, the OpenStream compiler generates a single call
for the allocation of the entire data-flow frame. For input buffers that are separated from the frame,
the compiler must generate a call to the allocator function for each input buffers.

Consider the example below, in which a single task with three input views is defined.

Listing 4.2: Example of a task with multiple input views

1 void stream_function(void)
2 {
3 ...
4 int horizon = 10;
5

6 float in_view_f[horizon];
7 int in_view_i[horizon];
8 double in_view_d[horizon];
9

10 #pragma omp task input(fstream >> in_view_f[horizon], \
11 istream >> in_view_i[horizon], \
12 dstream >> in_view_d[horizon]) \
13 {
14 ...
15 }
16

17 ...
18 }

In the default scheme for code generation the program above is translated into the code of the next
listing. As explained in the previous chapter in Section 3.5, the code generated by the compiler
only exists in an intermediate representation and the code below only serves as an illustration.

Listing 4.3: General lines of the code generated by the compiler for input data embedded into a data-flow frame

1 struct frame_1 {
2 size_t sc;
3 int horizon;
4 struct view in_view_f;
5 struct view in_view_i;
6 struct view in_view_d;
7 void (*work_fn)(void*);
8 char buf[];
9 };

10

11 ...
12

13 void stream_function(void)
14 {
15 ...
16

17 size_t frame_size = sizeof(struct frame_1) +
18 horizon*sizeof(float) +
19 horizon*sizeof(int) +

67

Chapter 4: A NUMA-aware run-time and execution model

20 horizon*sizeof(double);
21

22 struct frame_1* fp = tcreate(frame_size);
23 ...
24 fp->in_view_f.data = &fp->buf[0];
25 fp->in_view_i.data = &fp->buf[horizon*sizeof(float)];
26 fp->in_view_d.data = &fp->buf[horizon*sizeof(float)+horizon*sizeof(int)];
27 ...
28 }

The data-flow frame embedding the input data is allocated by a call to tcreate in Line 22. The
assignment of addresses within the data region of the frame to the data pointers of the input views
takes place in Lines 24 to 26. The code generated for separate input buffers is presented in the next
Listing.

Listing 4.4: General lines of the code generated by the compiler for input buffers that are separated from the data-flow frame

1 ...
2

3 void stream_function(void)
4 {
5 ...
6

7 size_t frame_size = sizeof(struct frame_1);
8 struct frame_1* fp = tcreate(frame_size);
9 ...

10 alloc_view_data(&fp->in_view_f, horizon*sizeof(float));
11 alloc_view_data(&fp->in_view_i, horizon*sizeof(int));
12 alloc_view_data(&fp->in_view_d, horizon*sizeof(double));
13 ...
14 }

A first difference is the calculation of the size of the data-flow frame in Line 7. As the frame does
not contain input data any more the size of the allocation is equal to the size of the structure
representing the frame. Furthermore, the initialization of the data pointers has been replaced with
calls to alloc_view_data in Lines 10 to 12. This function allocates a buffer of the size specified
by the second argument from a memory pool and assigns the result to the data pointer of the view
that was passed as the first argument.

4.4 NUMA-aware memory pools
With input buffers separated from data-flow frames and the additional restriction on the

horizon and burst of matched input and output views, each data structure that is allocated from
a memory pool is placed entirely on a single node. However, it is still possible that, due to the
liberation of buffers of tasks executed earlier, the free list of a worker’s memory pool contains
blocks that have been placed on remote nodes. In this section, we introduce NUMA-aware memory
pools, where each pool is associated to a NUMA node and only contains blocks that have been
placed on the node. When a data structure is freed, the run-time determines on which node the
embedding block has been placed, looks up the corresponding memory pool and adds the block to
the appropriate free list of the pool. This requires the run-time system to be able to determine the
placement of a block accurately and efficiently, i.e., the identification of the placement of a block
must be correct and its overhead on execution time should be as low as possible. We first describe
how the placement of blocks can be determined efficiently and accurately and then show how
these mechanisms can be integrated into the life cycle of blocks in order to enable NUMA-aware
memory pooling.

4.4.1 Determining the placement of blocks

A naive solution to determine on which node a block has been placed is to query the operating
system for the placement of each of the block’s pages every time information on its placement is
needed. This requires that the addresses that correspond to page boundaries within the address
range of the block are determined and passed to the operating system using the move_pages
system call. As the operating system must traverse the data structure representing the address

68

Chapter 4: A NUMA-aware run-time and execution model

space of the requesting process for each of the block’s pages, each such call takes a certain amount
of time to complete. In addition, the time of each call depends on the number of concurrent calls
from multiple threads, as shown below.

Figure 4.10 shows the duration of one call to move_pages with increasing concurrency for our
two test platforms (described in Section 6.3) with 64 and 192 cores, respectively. The block size used
for each call corresponds to a typical size of 512KiB for an input buffer in the applications used in
the experimental evaluation of this thesis. As the minimal page size on the test systems is 4KiB,
the addresses passed to move_pages correspond to the page boundaries of small pages. Each
data point in the graphs represents the mean value for a total of 50 runs of a synthetic benchmark
that measures the average duration of one call to move_pages for a set of threads, where each
thread performs 10,000 calls to move_pages. The error bars indicate the standard deviation. For a
low number of concurrent requests, the duration of a single call remains between 10kcycles and
20kcycles on both platforms, but becomes orders of magnitude higher when all the cores of the
machine are used.

However, in a real-world scenario cores execute other instructions between two calls and thus
do not constantly query the operating system. Figure 4.11 shows the mean duration of one call to
move_pages as a function of the number of idle cycles between two calls when using all cores
of the machines. For the 64-core machine the duration drops rapidly and reaches the minimal
duration at about 4Mcycles of idle time between two calls. In contrast to this, the duration on
the 192-core machine drops slower and remains high even if several million cycles lie between
two calls to move_pages, as shown in Figure 4.11b. The minimal duration is reached between
8Mcycles and 10Mcycles.

For NUMA-aware data placement and NUMA-aware scheduling, information on the placement
of a block is needed before the execution of a task. Hence, the duration between two calls
corresponds to the duration of a task. Figure 4.12 interprets the duration between two calls as
the task duration and shows the relative overhead in percent of the calls to move_pages on
execution time. The stippled lines indicate a limit of five percent, which we consider as the
highest acceptable overhead. The graph shows four different curves, each for a different amount
of addresses passed to move_pages, ranging from a single address (1 page) to all addresses that
represent page boundaries of small pages of the block (all pages).

Interestingly, the determination of the placement of all pages is faster than determining the
placement of a single page on the 64-core system, although the overhead increases from a single
page to ten pages. Figure 4.13, showing the duration of one call as a function of the number of
pages included in each query, provides more detailed information on this issue. The number of
cycles between two calls was set to 1.5Mcycles, which corresponds to the duration with the largest
gap between the overhead for determination of the placement of a single page and determination
of the placement of all pages. As can be seen in the graph, the duration of one call increases with
the number of pages included in the query, until it reaches a maximum at about 90 pages. For a
higher number of pages, the duration decreases and reaches its minimum for the total number of
128 pages of a 512KiB block. However, as Figure 4.12a shows that the duration of a task must be
higher than 2.5Mcycles to stay below the limit of five percent independently from the number of
pages included in each query, we do not have investigated the origins of the unexpected behavior
above.

For the 192-core system the correlation between the number of pages per query and the
overhead is much clearer, as the overhead increases with the number of pages with a minimum for
a single page and a maximum for the entire set of pages of a buffer. The minimal duration of a
task in order to stay below the limit for the overhead depends on the number of pages that are
included in a query. If all pages of the block are included, tasks should take more than 8Mcycles,
while for a single page, the overhead drops below five percent at about 5Mcycles.

In conclusion, the duration of a task should be at least higher than 5Mcycles in order to stay
below the threshold for the overhead on execution time on both systems. However, the typical
duration of tasks in the applications that we have used for experimental evaluation can be below
1.5Mcycles and is below 5Mcycles for most of the applications. Hence, systematic redirection of

69

Chapter 4: A NUMA-aware run-time and execution model

0 10 20 30 40 50 60 70
Number of concurrent threads

0.0
200K
400K
600K
800K

1M
1.2M
1.4M
1.6M

M
ea

n
du

ra
tio

n
[c

yc
le

s]

(a) 64-core system

0 50 100 150 200
Number of concurrent threads

0.0
1M
2M
3M
4M
5M
6M
7M
8M

M
ea

n
du

ra
tio

n
[c

yc
le

s]

(b) 192-core system

Figure 4.10: Duration of a call to move_pages with increasing concurrency

0.0 2M 4M 6M 8M 10M 12M 14M
Number of cycles between two calls

0.0

200K

400K

600K

800K

1M

1.2M

1.4M

M
ea

n
du

ra
tio

n
[c

yc
le

s]

(a) 64-core system

0.0 2M 4M 6M 8M 10M 12M 14M
Number of cycles between two calls

0.0
1M
2M
3M
4M
5M
6M
7M
8M

M
ea

n
du

ra
tio

n
[c

yc
le

s]

(b) 192-core system

Figure 4.11: Duration of a call to move_pages with maximum concurrency and varying duration
between two calls

requests to obtain the placement of the pages of blocks is not a viable option for the run-time.

As we have shown above, the overhead on execution time related to the determination of data
placement is conditioned by three parameters: the number of concurrent system calls, the total
number of calls and the number of pages whose placement is to be determined with each system
call. In the following part, we introduce two techniques to reduce the number of system calls and
one technique to decrease the number of pages per call.

Determination of the placement only for large blocks

The overhead for the determination of the placement of the input data of a task increases
with the number of the input buffers associated to the task as for each input buffer at least one
call to move_pages is necessary. Hence, for tasks with a large number of input dependences,

500K 1M 1.5M 2M 2.5M 3M 3.5M 4M
Number of cycles between two calls

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0

M
ea

n
ov

er
he

ad
 [%

] 1 page
5 pages
10 pages
All pages

(a) 64-core system

2M 3M 4M 5M 6M 7M 8M 9M 10M
Number of cycles between two calls

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0

M
ea

n
ov

er
he

ad
 [%

] 1 page
5 pages
10 pages
All pages

(b) 192-core system

Figure 4.12: Overhead of a call to move_pages with maximum concurrency as a function of the duration
between two calls for a varying number of pages

70

Chapter 4: A NUMA-aware run-time and execution model

0 20 40 60 80 100 120 140
Number of pages

200K

300K

400K

500K

600K

700K

800K

M
ea

n
du

ra
tio

n
[c

yc
le

s]

Figure 4.13: Duration of a call to move_pages on the 64-core system as a function of the number of pages
whose placement is determined with 1.5Mcycles between two calls

Page included in sampling
Page boundary

Figure 4.14: Page sampling with a sampling distance of 16 pages

the overhead can compensate the possible improvements of the execution time resulting from
NUMA-aware scheduling and NUMA-aware allocation. Reduction of this overhead requires more
elaborated techniques to determine the placement as simple calls to move_pages for each of the
input buffers. However, in the applications studied in this thesis, such tasks only represent a small
fraction of the total number of tasks.

The placement of small input buffers is only crucial for the execution time of a task if the
task only reads from and writes to small buffers. The vast majority of tasks has either strongly
unbalanced dependences, e.g., one input buffer of 512KiB and a few input buffers of less than 4KiB,
or balanced dependences with relatively large input buffers, e.g., two input buffers of 512KiB. The
buffers whose placement is crucial for performance thus all exceed a threshold of a few KiB, such
that the run-time does not need to determine the placement of small buffers.

As a first measure to reduce the number of system calls, the run-time can thus neglect buffers
whose size does not exceed the threshold. A value of 10kB enables discrimination between small
and large buffers, we have thus configured the run-time to determine only the placement of input
buffers that are larger than 10kB.

Page sampling

As shown in the previous section, one can assume that every input buffer is placed entirely on
a single node. However, in order to determine on which of the nodes contains the buffer, it is not
sufficient to determine only the placement of a single page. For example, for large input buffers
composed of small pages, the first page might be allocated on the node that performed the refill
operation and the rest of the pages might be allocated on the node that first wrote input data to the
buffer. Sampling only the second small page or a page somewhere in the middle of a block is not
sufficient either, since for huge pages it is possible that a page spans two or more blocks occupying
neighboring memory region. Figure 4.15 illustrates this situation. As the blocks are not aligned to
boundaries of huge pages, the page in the center of the figure contains data of two blocks. From a
block’s perspective, this means its data might be located on two different nodes as is the case for
the second block whose data is located on nb and nc.

However, determining the placement of all pages that form a buffer is not required either, since
the number of small pages for large buffers is much higher than the maximal number of nodes that
could contain the pages. A simple sampling technique that determines the placement of every nth
small page is sufficient to determine where the majority of the pages of the buffer are placed. Using
this technique, the containing node is defined as the node with the highest number of samples.

71

Chapter 4: A NUMA-aware run-time and execution model

Huge page

block block

Figure 4.15: Huge page spanning two blocks

Meta-
data

Actual data

Base address
of the block

Figure 4.16: Layout in memory of a
block and its metadata section

Figure 4.14 illustrates sampling of every 16th small page. The size of a small page is indicated
by SP and only pages with an offset which can be represented as an integer multiple of 16SP are
sampled. For the experiments we have used a sampling distance of 64KiB, i.e., every 16th small
page.

However, situations in which substantial parts of a buffer are placed on more than one node
occur only very rarely, for less than one percent of the buffers. Thus, sampling less pages per
buffer might be sufficient in most cases. As the overhead of the sampling of every 16th small page
is already sufficiently small, we did not investigate if the sampling distance can be increased or
whether sampling at specific positions of the buffer is sufficient.

Caching of information about data placement

Last and most important, querying the operating system multiple times for the placement of
the same block is expensive in terms of execution time and is not necessary. As pages are never
migrated between nodes unless explicitly requested by the application, it is sufficient to determine
the initial placement of a block and to reuse this information each time information about the
block’s placement is needed afterwards. This information about the placement can be cached
in a small metadata section in front of a block, as shown in Figure 4.16. This layout in memory
enables rapid determination of information on placement simply by calculating the address of
the metadata section from the block’s base address and by accessing the appropriate field of the
metadata structure. Storing metadata sections in front of the actual data is a common technique in
memory management [84].

4.4.2 Integration into the life cycle and per-node memory pools

The methods presented above aim at reducing the overhead associated to the determination of
the placement of blocks, but we did not discuss at which moment the procedure to determine the
initial placement of a block should be triggered. In order to obtain correct results for the placement,
it must be ensured that the sampling takes place after physical allocation of all of the block’s
pages. As explained in Section 4.1.1, this is the case after the pages have been written for the first
time. For input buffers, which are the only data structures whose size exceeds the threshold, this
means that the sampling can only take place when the producer task writing its output data to the
buffer has terminated. As all the producers of a task that becomes ready are guaranteed to have
terminated, the run-time can thus safely determine the placement of the input buffers of a task
when the synchronization counter of the task reaches zero.

Upon termination of a task, its input buffers are not used anymore and must be freed. To avoid
that a memory pool contains blocks from different nodes it is necessary to free an input buffer to
a memory pool of a worker that executes on a core of the node that contains the block’s pages.
As there are as many workers as cores per node, the run-time would have to choose a target pool
among the pools of the same node. In addition, a worker that needs to allocate a buffer on its local
node, but whose free list of the appropriate size is empty would either have to search through all
pools associated to the same node or it would have to initiate a refill operation. By grouping blocks
of the same node in a single memory pool and by sharing this pool among the workers that execute
on the procedure for allocation and liberation of buffers can be simplified. Allocation of a buffer
can be carried by checking a single memory pool and liberation of a buffer can be implemented
simply by handing the buffer to the unique memory pool of the node containing the block in which

72

Chapter 4: A NUMA-aware run-time and execution model

the buffer was embedded. We refer to this approach as per-node memory pools.
Allocation of a data structure in a memory pool of a node yields either (a) a data structure of

small or huge pages that has already been placed entirely on the node that the memory pool is
associated to or (b) a structure composed of small pages that have not been allocated physically
except the first page, which is allocated on the node of the worker that initiated the refill operation
from which the structure originates or (c) a data structure that consists of a huge page that is placed
entirely on the node that triggered the refill operation from which the structure originates. It is
worth noting that the last situation only occurs when a worker of a remote node triggered the
refill operation and when the structure is used for the first time. As each structure is freed to the
correct memory pool after use, cases (b) and (c) become less likely over time, such that in most
cases an allocation from a memory pool yields a structure that is entirely placed on the node to
which the pool is associated. This provides the run-time system with fine-grained control over
data placement through allocation from an appropriate memory pool.

4.5 Reducing the impact of per-node memory pools on performance
A drawback of per-node memory pools compared to worker-private pools is that multiple

workers compete for the resources provided by a pool. Hence, the free lists of a pool need to be
protected against concurrent accesses, e.g., using locks, which can introduce huge overheads for
high concurrency. However, the number of workers per pool depends on the number of cores per
node, which is typically relatively low in order to avoid congestion on the resources shared by the
cores of a node. For example, on both of our test systems only eight cores share a node. Thus, the
most important sources of overhead are the critical sections protected by the locks rather than the
operations to acquire and release a lock. Freeing a structure to or unchaining a block from a free
list are fast, since they only entail an update of pointers. The most time-consuming operations on
free lists are refills, as these operations issue system calls for logical allocation and trigger physical
allocation upon the chaining of new blocks. In this section, we propose a set of techniques that
aim at reducing the duration of critical sections and which thus reduce the impact on performance
resulting from the use of per-node memory pools.

Allowing concurrent operations during refills

During a refill operation on a list other workers might try to free data structures to or allocate
data structures from the same list. Keeping the list locked during the refill blocks these operations
and prevents the run-time system from reusing existing blocks rapidly. Hence, when a worker
detects that a refill is necessary it should release the lock on the free list immediately after detection.
During the system call other workers can free and allocate blocks without waiting for the refill
operation to finish. When the system call for memory allocation returns, the lock can be re-acquired
and the resulting new data blocks can be added safely to the list. When the refill is complete, the
lock is released and the new blocks become available.

Avoiding eager physical allocation at a refill through lazy splitting

Another time-consuming operation is the physical allocation of pages during a refill caused by
the chaining of blocks. The amount of data that is allocated physically and thus the duration of the
chaining depends on the page size, the size of blocks and the size of the chunk that is allocated
from the operating system and split into individual blocks. For example, for a fixed chunk size of
2MiB and a page size of 4KiB the chaining of blocks of 512KiB causes four pages or 16KiB to be
allocated physically, while for blocks of 32KiB using the same page and chunk size a total of 64
pages or 256KiB must be allocated physically.

By default, the blocks resulting from a split of a chunk are all chained in the free list at the end
of the refill operation as shown Figure 4.17a. We refer to this technique as immediate splitting of
the chunk. At each allocation afterwards, one block is removed from the list and the chain of the
remaining blocks forms the new free list (Figure 4.17b to 4.17d).

The number of physical allocations at the refill can be reduced by employing a mechanism
which we refer to as lazy splitting. Figure 4.18 illustrates how this mechanism works. Instead of

73

Chapter 4: A NUMA-aware run-time and execution model

(a) Refill (b) Allocation of the first
block

(c) Allocation of the
second block

(d) Allocation of
the third
block

Figure 4.17: Refill and allocation with immediate splitting

(a) Refill (b) Allocation of the first
object / first split

(c) Allocation of the
second object /
second split

(d) Allocation of
the third
object / last
split

Figure 4.18: Refill and allocation with lazy splitting

splitting the entire chunk obtained from the operating system into smaller blocks, the whole chunk
is added to the free list as if the chunk was a an ordinary block, but with an indication for the
number of blocks that can be obtained from the chunk (Figure 4.18a). At the first allocation after
the refill, a first block is separated from the chunk and the remaining part with a reduced number
of block forms the new free list (Figure 4.18b). This process continues, until the remaining part is
reduced to a single block (Figure 4.18c and 4.18d). The refill operation only touches a single page to
store the number of blocks in the chunk, just like each allocation afterwards. Lazy splitting thereby
avoids eager physical allocation, such that the overhead for physical allocation and initialization
of memory is distributed over time and thus reduces the duration of a refill.

4.5.1 Reducing the number of system calls for logical allocation

Finally, the last time-consuming operation during a refill is related to interaction with the
operating system. At each refill, the run-time must issue a call to the operating system in order to
trigger logical allocation of a new memory region that will be used as the chunk for the refill. In
order to reduce the number of system calls, a technique similar to lazy splitting can be employed.
Instead of allocating a chunk from the operating system at each refill, a larger chunk of memory is
allocated for each memory pool at initialization. The allocation of smaller chunks needed for refills
can be carried out entirely in user space, simply by using a memory region from the large chunk.
When the large chunk has been consumed entirely, a new large chunk must be allocated to satisfy
further refills.

4.6 Placement of persistent run-time structures
An efficient NUMA-aware run-time does not only need to care about placement of dynamic

objects for the task-parallel application, but must also place its own data structures efficiently in
order to prevent itself from becoming bottleneck for performance. A data structure that is used
exclusively within the run-time and whose placement is critical for performance is the structure
representing a worker. The size of this structure is low, but each instance is accessed frequently as
it contains a work-stealing deque and a single entry software cache for the scheduling of tasks. As

74

Chapter 4: A NUMA-aware run-time and execution model

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic

1.5

2.0

2.5

3.0

3.5

4.0

4.5

W
al

l c
lo

ck
 e

xe
cu

tio
n

tim
e

[s
]

3.8

3.2

1.9

1.6

2.1 2.1

3.5

3.3

2.0
1.9

4.1 4.1 3.9

3.2

Placement on Node 0 Placement on local node

Figure 4.19: Influence of the placement of structures representing workers on performance

each of the instances is primarily accessed by the worker associated to it, each instance should be
placed on the node of the worker in order to increase the locality of memory accesses.

However, workers are allocated and initialized during set-up of the run-time, which is done
sequentially. Hence, first-touch placement would cause all of the structures to be allocated on a
single node. Therefore, it is necessary to use explicit placement on the respective nodes, e.g., by
using the mbind function mentioned in Section 4.1.2. Another issue is the layout of these instances
in memory. As they are very small, using an ordinary array to store them would cause several
instances to be located in the same page, which leads to multiple structures being placed on the
same node. To avoid this, the structure must be padded to the size of a page and each instance
must be placed individually.

Figure 4.19 shows the wall clock execution time in seconds for the dynamic single assignment
versions of the benchmarks presented in Section 6.1 on the 192-core machine with 24 NUMA
domains. The first bar for each benchmark represents the median execution time of 50 executions
for the version of the run-time which places all worker structures on the first node of the system.
Error bars indicate the standard deviation. The second bar shows the same value for the version of
the run-time which places each structure representing a worker on the local node of the worker.

For most of the benchmarks (seidel, jacobi-1d, jacobi-3d, bitonic) the median execution time can be
reduced significantly when placing the structures on appropriate nodes. In addition, the variation
is often lower (seidel, jacobi-1d and bitonic). For the other benchmarks the performance of both
versions is approximately the same. Hence, placing the worker structures on the local nodes of the
workers can be considered as beneficial.

4.7 Summary
The solutions presented in this chapter allow the run-time to determine the placement of

data efficiently and accurately and to place data structures on specific nodes. We presented the
mechanisms behind the placement of data on the different NUMA nodes of the machine from the
perspective of the operating system and discussed the influence of the default page placement
policy, first-touch placement, and the size of pages on memory allocation using memory pools. We
identified the scattering of data as a first problem for accurate data placement and proposed the
separation of input data and data-flow frames as well as a restriction on the programming model
as a solution. In the second part, we introduced an efficient run-time mechanism to determine
the placement of blocks and showed how this mechanism can be integrated into the life cycle
of data managed by memory pools. Finally, we introduced per-node memory pools that allow
the run-time system to allocate data structures on specific NUMA nodes. In the last section, we
focused on the placement of data structures of the run-time that are allocated at the beginning of
the execution and remain in use until termination and concluded that explicit placement of these

75

Chapter 4: A NUMA-aware run-time and execution model

structures using the operating system interface is sufficient.
The methods presented in this chapter are based on first-touch placement, which is the default

mechanism for placement employed by the Linux operating system kernel. This strategy makes it
necessary to determine explicitly on which node data has been placed after the first write accesses
to the respective pages. For future work it would be interesting to investigate the behavior of
other placement strategies as well. For example, a per-node memory pool could force physical
allocation of a chunk on the local node during a refill operation and store the information about
the placement directly in the metadata section without querying the operating system. However,
the run-time would have to take into account that such a predefined placement might fail if the
targeted node cannot provide unused physical pages.

Also, the thresholds presented in the chapter allow the run-time to discriminate between large
and small buffers for the benchmarks studied in this thesis. For a more generic approach that
supports tasks with input buffers of different sizes, the actual values for the thresholds have to be
determined more accurately or even the concept of using thresholds has to be revised in future
work.

76

5 Dynamic single assignment

In the previous chapter, we introduced per-node memory pools that provide the run-time
system with the ability to place input buffers accurately on NUMA nodes and that allow the run-
time to determine the placement of an input buffer efficiently. These capabilities are a necessary
condition for NUMA-aware scheduling and NUMA-aware data placement presented in Chapter 7
and Chapter 8. However, to benefit from these optimizations, the run-time must be able to
determine which data is accessed by a task and to control its placement.

In this chapter, we introduce programming based on dynamic single assignment (DSA) on stream
elements, which puts management of memory accessed by tasks under the responsibility of the
run-time. This programming style fully exploits the concepts of data-flow tasks and is naturally
supported by the OpenStream programming model. We show how programs based on dynamic
single assignment meet the requirement above and illustrate the required implementation steps
starting from a sequential program. We then discuss the influence of the control program on data
locality and contention in these applications and show that sequential task creation can have a
negative impact on these aspects. As a result of this analysis, we conclude that task creation by a
parallel control program is often beneficial. The conditions for the parallelization of the control
program are sketched at the end of the chapter.

The chapter is organized as follows. Section 5.1 introduces the basic concepts of dynamic single
assignment and provides definitions for dynamic single assignment with respect to addresses
and dynamic single assignment with respect to stream indexes. Section 5.2 provides a more
formal view on deriving the working set of a task from the information made available to the
run-time by using dynamic single assignment. Section 5.3 introduces an informal methodology for
the implementation of dynamic single assignment using OpenStream, starting from a sequential
implementation of an algorithm. The influence of sequential task creation on the memory footprint
and data locality of an application is discussed in Section 5.4. The chapter finishes by sketching the
conditions for the parallelization of the control program in Section 5.5.

5.1 Concepts of dynamic single assignment

Before we explain the principles and go into the details of dynamic single assignment, we first
set the terminology that is used in the rest of the chapter.

Chapter 5: Dynamic single assignment

5.1.1 Terminology

We define a data element as an entity of data that can be read and modified and refer to the
range of addresses that is occupied by a data element as its data location. Whenever a data element
is modified, a new version of the element is generated. The values of two versions of a data element
do not necessarily have to be different. For example, a new version with the same value could
be generated by assigning the return value of a function, which in a particular case yields the
same value as the previous version of the data element. We illustrate the terms defined above on a
simple example with a set of local integer variables i, j and k that are declared, initialized and
manipulated by a function as in the following listing.

Listing 5.1: Illustration of the terminology for dynamic single assignment

1 void foo(void)
2 {
3 int i = 0;
4 int j = 0;
5 int k = 0;
6

7 while(some_condition) {
8 i = bar(i);
9

10 if(some_predicate(i)) {
11 j = baz(i, j);
12 k = doz(i, k);
13 }
14 }
15

16 return i + j + k;
17 }

As all variables are declared locally within the scope of the function their addresses belong to the
program stack and are defined when foo is called. Their data locations are thus only defined
during execution of the function. As i receives a new value at each iteration, a new version of i is
also generated at each iteration. The updates of the other variables depend on some predicate of i,
which might not be true for each value of i. Hence, there are not necessarily new versions of j
and k at each iteration and the total number of generated versions of i, j and k might be different
upon return from foo.

The example also shows that there is a tight coupling between data elements and data locations.
The data location of an element is defined before its first reference when foo is entered and remains
valid until the data element is discarded at the end of the function. Different versions of the data
element are thus stored at the same data location.

5.1.2 Principles of dynamic single assignment

The main concept of dynamic single assignment is to use a different data location for each new
version of a data element and thus to update each data location at most only once. This implies
that a data element cannot be updated without changing its location and that in-place updates are
not allowed. This decouples data elements from locations and allows the system to choose a new
location at every update. In contrast to static single assignment (SSA), the number of versions is not
necessarily known statically and might depend on values that are only known at execution time.
The following manual example, which declares an array of integers with one array element per
version of a data element i, illustrates this concept.

Listing 5.2: Example of manual dynamic single assignment

1 int i[n];
2 i[0] = 0;
3 i[1] = i[0]*5 + 3;
4 i[2] = i[1]*i[1];
5 i[3] = i[2]/3;
6 ...

At each update of i a new array index and thus a new data location is chosen to store the newly
generated version. Note that dynamic single assignment in general does not require a specific

78

Chapter 5: Dynamic single assignment

mapping of versions to data locations as in the example above, where versions are stored at
locations of subsequent array indexes. As long as a location is only used at most for a single
version, the mapping is correct. The following listing uses different indexes of the array to store the
same versions as in the previous listing and is also a valid example for dynamic single assignment.

Listing 5.3: Example of manual dynamic single assignment with an irregular mapping of versions to data locations

1 int i[n];
2 i[0] = 0;
3 i[2] = i[0]*5 + 3;
4 i[715] = i[2]*i[2];
5 i[1] = i[715]/3;
6 ...

The formal restrictions for the mapping of versions to data locations can be defined as follows.
Let E be the set of all possible data elements and let versions of an element be identified by a
unique integer with zero identifying the initial version of an element. Let furtherA ⊂ N0 be the set
of all addresses of a flat address space and let loc : E × N0 → P(A) be the function that maps each
version of a data element to a data location. A data location is defined by a finite set of addresses at
which the data of an element can be stored. For dynamic single assignment loc is restricted, such
that:

∀e, e′ ∈ E : ∀v, v′ ∈ N0 : (e 6= e′ ∨ v 6= v′)⇒ loc(e, v) ∩ loc(e′, v′) = ∅

Hence, an address is either not used at all or it belongs to a specific version of a specific data
element.

5.1.3 Dynamic single assignment on streams

The set of streams and stream indexes of an OpenStream program can be seen as an unbounded,
two-dimensional address space that allows to implement dynamic single assignment based on
stream accesses, where each version of a data element is stored at a different set of stream indexes.
Let locs : E × N0 → P(S × N0) be a function that maps each version of a data element to a set of
stream indexes. For dynamic single assignment, this function must thus fulfill the same restriction
as loc defined above:

∀e, e′ ∈ E : ∀v, v′ ∈ N0 : (e 6= e′ ∨ v 6= v′)⇒ locs(e, v) ∩ locs(e′, v′) = ∅

Hence, every OpenStream program that passes all data elements through streams, i.e., each
OpenStream program that does not use global variables or pointers to memory regions that are
shared by multiple tasks, fulfills the restrictions for dynamic single assignment by construction.
However, due to the execution model of OpenStream, the mapping of stream elements to addresses
is not necessarily unique. Stream data is stored in input buffers and due to memory pooling these
buffers can be reused. It is thus possible that the same address is used multiple times to store
different stream elements. Thus, a program based on dynamic single assignment with respect
to the address space formed by streams and stream indexes is not necessarily a program with
dynamic single assignment with respect to the address space formed by memory addresses of the
machine. We illustrate this aspect on a short example, given in the listing below.

Listing 5.4: Stream indexes and addresses in the context of dynamic single assignment

1 int istream[4] __attribute__((stream));
2

3 int i_in;
4 int i_out;
5 int i3;
6

7 /* Initialization task */
8 #pragma omp task output(istream[0] << i_out)
9 {

10 i_out = 5;
11 }
12

13 /* Task: t0 */
14 #pragma omp task input(istream[0] >> i_in) \

79

Chapter 5: Dynamic single assignment

15 output(istream[1] << i_out)
16 {
17 i_out = i_in*i_in;
18 }
19

20 /* Task: t1 */
21 #pragma omp task input(istream[1] >> i_in) \
22 output(istream[2] << i_out)
23 {
24 i_out = i_in+3;
25 }
26

27 /* Task: t2 */
28 #pragma omp task input(istream[2] >> i_in) \
29 output(istream[3] << i_out)
30 {
31 i_out = i_in/3;
32 }
33

34 /* Termination task */
35 #pragma omp task input(istream[3] >> i_in)
36 {
37 }

As can be verified easily, all versions of i are associated to different streams and stream indexes:
the first version of i is stored at the first index of istream[0], the second version at the first
index of istream[1] and so on. However, the input data of a task is stored within the input
buffers associated to the task and the address of a stream element is defined by the input buffer
that contains this element. The memory pooling mechanism of Section 3.4.4 and Section 4.4.2
allows an input buffer to be freed if it is not used any longer and, more importantly, to be reused
by another task afterwards. Hence, in the example, the data-flow buffer of t0 might be reused for
t2 and version 0 and version 2 might be stored at the same addresses, although they are associated
to different stream elements.

In the remainder of this document, we use the term dynamic single assignment to refer to
dynamic single assignment on streams. Furthermore, a version of an element is defined as the
value of the stream elements that represent the data element. Intermediate versions that may be
generated during execution of a task, but which do not correspond to the final values written to
the stream, are not considered as versions. For example, if a task reads a stream element and copies
its value to a task-local variable, modifies this variable multiple times and writes the result back
to an element of an output stream, only the value of the element at the beginning and at the end
of the task are considered as versions with respect to dynamic single assignment. The following
listing provides an example of such a behavior.

Listing 5.5: Task-local modifications not counted as versions

1 int a_stream __attribute__((stream));
2 int another_stream __attribute__((stream));
3 int i_in, i_out;
4

5 #pragma omp task input(a_stream >> i_in) \
6 output(another_stream << i_out)
7 {
8 int i = i_in;
9

10 for(int j = 0; j < N; j++)
11 i += some_function(i);
12

13 i_out = i;
14 }

The intermediate versions generated in the loop body do not count as versions, while the initial
value read from a_stream and the final value written to another_stream do.

5.2 Obtaining accurate information on data accesses
As stated at the beginning of this chapter, the main reason for the introduction of dynamic

single assignment is to be able to determine the working set of a task accurately in order to optimize

80

Chapter 5: Dynamic single assignment

the locality of memory accesses by scheduling the task near its data or by placing the data actively
near the core that executes a task. In this section, we show how the working set of a task can be
determined by the run-time system before execution of the task, based on the information provided
by dynamic single assignment.

LetM⊂ N0×A×{R,W} be the set of all possible memory accesses, where a triple (τ, a, u) ∈M
represents a memory access at time τ to address a in mode u. Let τS(t) and τE(t) be the start
and end of a t task with τS , τE : T∞ → N0. The set of memory accesses of a task t is defined
as acc : T∞ → P(M) with ∀(τ, a, u) ∈ acc(t) : τS(t) < τ < τE(t) ∧ |{(τ, a, u)}| = 1. The former
condition specifies that all memory accesses of a task take place after start and before end of the
task, while the latter specifies that only one memory access can take place at a time. We define the
working set ws : T → P(A) of a task as the set of distinct data locations accessed during execution
of the task, i.e., ws(t) = {a|∃(τ, a, u) ∈ acc(t)}.

Determining the working set of a task before task execution implies that ws(t) is known at a
time τ < τS(t). In Section 5.1.3 we defined that the values of each version of all data elements
in dynamic single assignment are stored exclusively in streams, which implies that all relevant
data is stored in input buffers. The only exception to this rule are the first and the final version,
which are usually handled by initialization and termination tasks and which are stored in shared
memory as explained below. However, in the benchmarks presented in Section 6.1, the number of
versions generated by the main computation tasks is far higher than the two versions handled by
the auxiliary tasks. Hence, for most of the tasks, the rules defined for dynamic single assignment
apply: all data handled by the task is stored in streams. In practice, a small portion of data is
still read from shared memory for convenience, especially parameters of the application or the
parameters for the granularity are often accessed from shared memory. However, these accesses
only represent a small fraction of the total number of memory accesses carried out by a task, such
that access to shared memory can be neglected and the task can be considered as conforming to the
restrictions of dynamic single assignment. The advantage of using dynamic single assignment on
stream elements is that acc(t) is restricted to accesses to input buffers and output buffers managed
by the run-time and whose addresses and sizes are known when a task becomes ready.

Let addr : T∞ × S × N→ A be a partially defined function that maps a stream element to its
address from the perspective of a task. Note that there is no globally unique mapping of stream
elements to addresses, as the same element can be available at multiple addresses when copied
by a broadcast. Thus, the mapping is only unique from the perspective of each task. Using this
definition, the working set of a task t is simply the union of all the addresses of all stream accesses
sacc(t) (defined in Section 3.1.2) of the task:

ws(t) =
⋃

(u,s,i)
∈sacc(t)

{addr(t, s, i)}

Furthermore, it can be derived from the execution model that the elements which are made
accessible by a view are mapped to consecutive addresses:

∀t ∈ T∞ : ∀(u, s, is, ie) ∈ views(t) : ∀i ∈ {is+1, ..., ie} : addr(t, s, i) = addr(t, s, is)+(i−is)·size(s)

Hence, the working set of a task can be represented by a set of consecutive address regions
wsC(t) ⊂ A×A, where each region is defined by its first and its last address:

wsC(t) =
⋃

(u,s,is,ie)
∈views(t)

{(addr(t, s, is), addr(t, s, ie))}

This set can easily be determined from dependence resolution of each view, since the starting
address of each of the pairs in wsC(t) is the data pointer of the associated view and the end address
can be determined by multiplying the horizon with the element size and by adding the result to
the start address.

81

Chapter 5: Dynamic single assignment

This makes profiling of the working set or deriving the working set from specific properties
of the program structure (e.g., memory accesses in leaf tasks of divide-and-conquer algorithms)
unnecessary and provides a reliable method for the prediction of a significant subset of a task’s
memory accesses before its execution.

5.3 Implementing an algorithm using dynamic single assignment
In this section, we illustrate the implementation of an algorithm using dynamic single as-

signment on the one-dimensional version of the seidel benchmark named seidel-1d, calculating
the average of three neighboring elements at each iteration of the algorithm. We start from a
sequential version and develop a task-parallel version that can be used as a drop-in replacement of
the original implementation. The process can be summarized as follows:

1. Identification of the data elements and versions
2. Partitioning of the data elements
3. Mapping to stream elements and definition of the interface of tasks generating new versions
4. Definition of auxiliary tasks needed for initialization and termination
5. Implementation of all tasks
6. Parallelization of the control program

Parallel control programs have not been introduced earlier and require some explanation. In this
section, we provide only an example of a parallel control program as a motivation and discuss
the implications of a parallel control program and restrictions of the parallelization in Section 5.4
and 5.5.

5.3.1 Identification of data elements, versions and appropriate partitioning

The sequential implementation of seidel-1d is straightforward: at each iteration, each element
of an array of double precision floating point values is updated according to its own value and
the values of the its left and right neighbors. The elements at the first position and at the last
position are treated as if their left and right neighbors, respectively had a constant value of zero.
The following listing shows an implementation of the complete algorithm.

Listing 5.6: Sequential implementation of seidel-1d

1 void seidel_1d_seq(double* data, size_t N, int num_iter)
2 {
3 for(int iter = 0; iter < num_iter; iter++) {
4 /* Leftmost element */
5 data[0] = (0 + data[0] + data[1]) / 3.0;
6

7 /* Elements in the center */
8 for(size_t i = 1; i < N-1; i++)
9 data[i] = (data[i-1] + data[i] + data[i+1]) / 3.0;

10

11 /* Rightmost element */
12 data[N-1] = (data[N-2] + data[N-1] + 0) / 3.0;
13 }
14 }

Obviously, the data elements in this application are the elements of the array, for which each
iteration yields a new version. The partitioning of the data determines the amount of data treated
by each task and therefore indirectly determines how much work must be carried out per task.
Parallelism is also conditioned by the partitioning, as it determines how many tasks can execute
in parallel. In addition, the size of the data treated by a task can have an influence on how well
caches are exploited. If the block size is bigger than the capacity of a cache and if data is referenced
frequently within the task, the cache miss rate might be high. Hence, the size of a data block is
often constrained by the cache size. As the characteristics of the hardware can differ from one
machine to another it is possible that a partitioning that yields good performance on one system
performs poorly on another system. Hence, using a static partitioning scheme might not yield the
same performance across multiple machines.

82

Chapter 5: Dynamic single assignment

A solution to this problem is to implement the application with variable granularity, whose
actual value is defined at execution time. The granularity which yields minimal execution time
among the possible values can then be determined experimentally on each machine without
modification of the implementation. For the example of the one-dimensional stencil, the array can
be partitioned into blocks whose size is specified at execution time. The sequential version with
variable granularity is shown in the listing below.

Listing 5.7: Sequential, blocked implementation of a seidel-1d

1 void seidel_1d_seq_blocked(double* data, size_t N, size_t B, int num_iter)
2 {
3 for(int iter = 0; iter < num_iter; iter++) {
4 /* Leftmost element */
5 data[0] = (0 + data[0] + data[1]) / 3.0;
6

7 /* Leftmost block */
8 for(int i = 1; i < B; i++)
9 data[i] = (data[i-1] + data[i] + data[i+1]) / 3.0;

10

11 /* Blocks in the center */
12 for(size_t i = B; i < N-B; i += B)
13 for(size_t j = 0; j < B; j++)
14 data[i+j] = (data[i+j-1] + data[i+j] + data[i+j+1]) / 3.0;
15

16 /* Rightmost block */
17 for(int i = N-B; i < N-1; i++)
18 data[i] = (data[i-1] + data[i] + data[i+1]) / 3.0;
19

20 /* Rightmost element */
21 data[N-1] = (data[N-2] + data[N-1] + 0) / 3.0;
22 }
23 }

The new function seidel_1d_seq_blocked implicitly divides the array in blocks of B elements
and treats each block individually during each iteration of the algorithm. The leftmost and
the rightmost block must be treated differently from the others due to the missing neighboring
elements on the left and the right, respectively. This separated treatment is done in lines 5 to 9 and
17 to 21. The remaining blocks are processed by the loop nest in lines 12 to 14.

5.3.2 Mapping of data elements to stream elements and definition of the interface of tasks
generating new versions

The next step towards an implementation using dynamic single assignment is to develop a
mapping between the versions of the data elements and stream elements based on the partitioning
established before. If possible, this mapping should take advantage of the layout of stream data
at execution time, e.g., using subsequent stream indexes for data elements that are processed
sequentially. For our example this means that the elements of a block should be mapped to a set of
contiguous stream indexes of the same stream. To avoid complex synchronization patterns in the
parallelized control program regarding the matching of views on a stream, each stream is used
only once, i.e., by a single producer and a single consumer (cf. Section 5.5).

After the determination of the mapping, the interface of the tasks can be defined according to
the data dependences. A task that processes a block of data does not only depend on the values
of the block itself from the previous iteration, but also on elements of the neighboring blocks. In
addition, the number of neighbors of a block depends on the position of the block within the
array. For example, a block in the center of the array, i.e., not at the rightmost or leftmost position,
depends on the values of its left neighbor from the current iteration, its own values from the
previous iteration and on the values of the right neighbor also from the previous iteration. For the
blocks on the left or right of the array, there is one dependence less due to the missing neighbor
either at the left or the right. Figure 5.1a illustrates these inter-block and inter-version dependences
for an array with three blocks.

From a block’s perspective, the data of a version of the block is read by up to two tasks. The
striped elements in Figure 5.1b indicate elements that are read by two tasks, while the other
elements are only read by the task of the same block at the next iteration. Hence, for one version

83

Chapter 5: Dynamic single assignment

Block 0 Block 2Block 1

inter-version

inter-block

(a) Block dependences

Block 0 Block 2Block 1

(b) Elements read by multiple
tasks

co
py

copy copy

co
py

co
py

copy copy

co
py

Block 0 Block 2Block 1

copy copy

(c) Copying of shared stream elements

Initialization

First iteration

Second iteration

Termination

...... ...

(d) Dynamic task graph

Figure 5.1: Dependences in the dynamic single assignment version of seidel-1d

of a block, there are multiple readers and multiple views on the same stream indexes would be
required to provide the readers with access to the shared data. This pattern of communication
can be implemented either through a broadcast, as described in Section 3.3, or by emitting shared
data manually on multiple streams. As the number of readers is fixed for each data element and
known at compile time and as optimizations of broadcasts are described after the optimizations for
ordinary input and output views, we chose to emit data manually on multiple streams. In addition,
each stream is only used to synchronize exactly two tasks in order to facilitate the creation of a
parallel control program as explained in Section 5.5.5.

Figure 5.1c shows this principle for the first two iterations and three blocks. Each arrow from a
task to a rectangle represents a write access to the elements of a unique stream and each arrow
starting at a rectangle and ending in a task represents a read access on the same stream. Data that
is read by more than one task is simply written twice to different streams, indicated by the dotted
line labeled copy.

In summary, for each iteration, there is a set of N
B streams used for dependences between

tasks processing the same block, N
SB
− 1 streams for inter-block dependences within the same

iteration and N
SB
− 1 streams for inter-block, inter-version dependences with N being the number

of elements in the data array and SB being the size of a block.

5.3.3 Definition of auxiliary tasks needed for initialization and termination

To replace the sequential algorithm of Listing 5.6, the implementation using dynamic single
assignment must use exactly the same interface. However, as the initial version of the data elements
is provided in a shared array and not within streams, there must be a set of initial tasks that copy
data from shared memory to the streams. Likewise, the values of the final versions must be copied
from streams to the shared array. The set of auxiliary tasks is thus composed of initialization tasks
that copy data to the streams and termination tasks that write the results back to shared memory.

84

Chapter 5: Dynamic single assignment

5.3.4 Implementation of all tasks

The following listing shows the dynamic single assignment implementation with a sequential
control program., including main computation tasks and auxiliary tasks copying data from shared
memory to streams and from streams to shared memory.

Listing 5.8: Parallel, dynamic single assignment implementation of seidel-1d

1 enum block_position {
2 POS_CENTER,
3 POS_LEFT,
4 POS_RIGHT
5 };
6

7 /* Update the values of one block according to the block’s
8 position in the array. */
9 void process_block(enum block_position pos, size_t B,

10 double* center_in, double* center_out,
11 double* left_in, double* left_out,
12 double* right_in, double* right_out)
13 {
14 double vleft_in = 0.0;
15 double vright_in = 0.0;
16

17 /* Left neighbor? */
18 if(pos != POS_LEFT)
19 vleft_in = *left_in;
20

21 /* Right neighbor? */
22 if(pos != POS_RIGHT)
23 vright_in = *right_in;
24

25 /* Update first element of the block */
26 center_out[0] = (vleft_in + center_in[0] + center_in[1]) / 3.0;
27

28 /* Update elements in the middle of the block that
29 only depend on the block’s own elements */
30 for(int i = 1; i < B-1; i++)
31 center_out[i] = (center_out[i-1] + center_in[i] + center_in[i+1]) / 3.0;
32

33 /* Update last element of the block */
34 center_out[B-1] = (center_in[B-2] + center_in[B-1] + vright_in) / 3.0;
35

36 /* Communicate the first value of the block to the left */
37 if(pos != POS_LEFT)
38 *left_out = center_out[0];
39

40 /* Communicate the last value of the block to the right */
41 if(pos != POS_RIGHT)
42 *right_out = center_out[B-1];
43 }
44

45 void seidel_1d_dsa(double* data, size_t N, size_t B, int num_iter)
46 {
47 size_t num_blocks = N/B;
48

49 /* Streams storing the values generated for each version */
50 double scenter[(num_iter+2)*num_blocks] __attribute__((stream));
51 double sleft[(num_iter+2)*num_blocks] __attribute__((stream));
52 double sright[(num_iter+2)*num_blocks] __attribute__((stream));
53

54 /* Indexes in the array of streams for input dependences */
55 #define LEFT_IN_IDX ((iter+1)*num_blocks+block-1)
56 #define RIGHT_IN_IDX (iter*num_blocks+block+1)
57 #define CENTER_IN_IDX (iter*num_blocks+block)
58

59 /* Indexes in the array of streams for output dependences */
60 #define LEFT_OUT_IDX ((iter+1)*num_blocks+block)
61 #define RIGHT_OUT_IDX ((iter+1)*num_blocks+block)
62 #define CENTER_OUT_IDX ((iter+1)*num_blocks+block)
63

64 /* Views on the stream elements */
65 double left_in, right_in, center_in[B];
66 double left_out, right_out, center_out[B];
67

68 /* Create tasks copying the initial version to the streams */
69 for(size_t block = 0; block < num_blocks; block++) {
70 /* Leftmost block */

85

Chapter 5: Dynamic single assignment

71 if(block == 0) {
72 #pragma omp task output(scenter[block] << center_out[B])
73 {
74 memcpy(center_out, &data[B*block], B*sizeof(double));
75 }
76 }
77 /* Other blocks */
78 else {
79 #pragma omp task output(scenter[block] << center_out[B], \
80 sleft[block] << left_out)
81 {
82 memcpy(center_out, &data[B*block], B*sizeof(double));
83 left_out = data[B*block];
84 }
85 }
86 }
87

88 /* Create one task for each block and each iteration */
89 for(size_t iter = 0; iter < num_iter; iter++) {
90 for(size_t block = 0; block < num_blocks; block++) {
91 /* Leftmost block */
92 if(block == 0) {
93 #pragma omp task \
94 input(scenter[CENTER_IN_IDX] >> center_in[B], \
95 sleft[RIGHT_IN_IDX] >> right_in) \
96 output(sright[RIGHT_OUT_IDX] << right_out, \
97 scenter[CENTER_OUT_IDX] << center_out[B])
98 {
99 process_block(POS_LEFT, B,

100 center_in, center_out,
101 NULL, NULL,
102 &right_in, &right_out);
103 }
104 }
105 /* Rightmost block */
106 else if(block == num_blocks-1) {
107 #pragma omp task \
108 input(scenter[CENTER_IN_IDX] >> center_in[B], \
109 sright[LEFT_IN_IDX] >> left_in) \
110 output(sleft[LEFT_OUT_IDX] << left_out, \
111 scenter[CENTER_OUT_IDX] << center_out[B])
112 {
113 process_block(POS_RIGHT, B,
114 center_in, center_out,
115 &left_in, &left_out,
116 NULL, NULL);
117 }
118 }
119 /* Block in the center */
120 else {
121 #pragma omp task \
122 input(scenter[CENTER_IN_IDX] >> center_in[B], \
123 sright[LEFT_IN_IDX] >> left_in, \
124 sleft[RIGHT_IN_IDX] >> right_in) \
125 output(sright[RIGHT_OUT_IDX] << right_out, \
126 sleft[LEFT_OUT_IDX] << left_out, \
127 scenter[CENTER_OUT_IDX] << center_out[B])
128 {
129 process_block(POS_CENTER, B,
130 center_in, center_out,
131 &left_in, &left_out,
132 &right_in, &right_out);
133 }
134 }
135 }
136 }
137

138 /* Create tasks copying the final version back to shared memory */
139 for(size_t block = 0; block < num_blocks; block++) {
140 /* Leftmost block */
141 if(block == 0) {
142 #pragma omp task input(scenter[num_iter*num_blocks+block] >> center_in[B])
143 {
144 memcpy(&data[B*block], center_in, B*sizeof(double));
145 }
146 }
147 /* Other blocks */
148 else {
149 #pragma omp task \
150 input(sleft[num_iter*num_blocks+block] >> left_in, \

86

Chapter 5: Dynamic single assignment

151 scenter[num_iter*num_blocks+block] >> center_in[B])
152 {
153 memcpy(&data[B*block], center_in, B*sizeof(double));
154 }
155 }
156 }
157

158 #pragma omp taskwait
159 }

The listing starts with the definition of process_block in lines 9 to 43, which performs one
iteration of the stencil on a single block. Values from the previous iteration as well as values
received from neighbors are passed as pointers to the respective data regions. The position of the
block is indicated by a value from an enumeration, such that process_block can carry out the
necessary steps depending on the block’s position.

Lines 50, 51 and 52 define arrays of streams with one stream for each dependence of a block,
each block and each iteration. The stream that is used to exchange data between two tasks is
determined through proper indexation of these arrays. For example, two tasks processing the
jth block at iterations k and k + 1, the data generated by the first task is passed through the
((k+1) ·B+ j)th stream of scenter. Indexation of the other arrays of streams is done in a similar
way. The preprocessor definitions of lines 55 to 62 serve as macros that facilitate the indexation
of the arrays of streams in the input and output clauses of the main tasks, based on the iteration
(iter) and the block identifier (block).

The initial tasks that copy data from shared memory to streams are created by the loop in
lines 69 to 86. Depending on the position of a block, the initial data only needs to be copied to one
stream or to two streams by the same task. The actual copying is carried out by a simple call to
memcpy with the target address corresponding to the base address of the appropriate view. All
main computation tasks are created by the loops in lines 89 to 136. Again, depending on the
position of the block, the interface of the associated task varies. Also, the task body is adapted to
the position and passes appropriate values to process_block. The terminal tasks are created by
the loop in lines 139 to 156.

The resulting task graph is shown in Figure 5.1d. The weights of edges between tasks pro-
cessing the same block at two different interations is 8SB and corresponds to the size of a double
precision floating point value multiplied with the number of elements per block. All other weights
correspond to dependences of a single double precision floating point value and have a weight of
only eight.

5.3.5 Parallelization of the control program

In the last step, the control program is parallelized. This step is necessary since it reduces
the memory footprint of the application and increases parallelism, as discussed in Section 5.4.
Depending on the complexity of the structure of the task graph, this step can be more or less
complicated. For algorithms with regularly structured task graphs, e.g., with a same set of tasks
that is instantiated at multiple iterations as in the example, the principles for parallelization are
simple: each task creates its indirect successor generating the version after next of the same data
elements, as illustrated in Figure 5.2. The initial tasks (i0 to i2), as well as the tasks treating the
blocks for the first iteration (b0,0 to b2,0), are created directly by the root task. Afterwards, each
task creates its indirect successor on the same block, i.e., a task ij creates bj,1, bj,k creates bj,k+2

and so on, until bj,n−2 creates tj , with n being the number of iterations. The end of task creation is
reached before the last iteration and neither bj,n−1 nor tj create follow-up tasks.

As the root task does not create all of the tasks, the taskwait construct at the end of seidel_1d_
dsa in Line 158 of Listing 5.8 does not synchronize the root task with all tasks anymore. Therefore,
the task graph contains an additional task d that is created by the root task and that reads a single
integer from each of the terminal tasks. When d is ready for execution, all other tasks besides the
root task have terminated. By synchronizing with d using a taskwait construct, the root task can
thus synchronize indirectly with all tasks of the task graph.

Due to the size of the code, we do not show the entire listing of the implementation with a

87

Chapter 5: Dynamic single assignment

...... ...
Figure 5.2: Parallel control program of seidel-1d

parallel control program and only sketch the actual code. In a first step, each task creation in
Listing 5.8 is moved to a separate function. Next, a function named create_followup_task
is defined and called from the body of each task. The parameters of create_followup_task
describe the exact instance of the task from which the function was called, i.e., the task type
(initialization or computation task), the block number and the iteration. Depending on the values
of these parameters, the function determines whether a follow-up task needs to be created and, if
this is the case, calls the appropriate function for task creation with the correct parameters. The
following listing shows illustrates this principle for the tasks processing blocks in the center of the
array:

Listing 5.9: Sketch of seidel-1d with a parallel control program

1 ...
2 enum task_type {
3 INIT_TASK,
4 MAIN_TASK
5 };
6

7 ...
8

9 void create_followup_task(enum task_type caller_type, int iter, int block,
10 double* data, size_t N, size_t B, int num_iter)
11 {
12 if(caller_type == MAIN_TASK) {
13 /* Does this task have an indirect succesor of the same type? */
14 if(iter+2 < num_iter)
15 create_main_task(data, N, B, num_iter, iter+2, block);
16 /* If not, does it have an indirect successor that is a terminal task? */
17 else if(iter == num_iter-2)
18 create_terminal_task(data, N, B, block);
19

20 /* Otherwise: Nothing to do, task creation stopped */
21 } else if(caller_type == INIT_TASK) {
22 /* Regular case: the indirect successor is a main task */
23 if(num_iter > 1)
24 create_main_task(data, N, B, num_iter, 1, block);
25 /* For a single iteration the indirect successor is a terminal task */
26 else
27 create_terminal_task(data, N, B, block);
28 }
29 }
30

31 void create_init_task(double* data, size_t N, size_t B, int num_iter, int block)
32 {
33 ...
34 }
35

36 void create_terminal_task(double* data, size_t N, size_t B, int num_iter, int block)
37 {
38 ...
39 }
40

41 void create_main_task(double* data, size_t N, size_t B, int num_iter,

88

Chapter 5: Dynamic single assignment

42 int iter, int block)
43 {
44 int num_blocks = N/B;
45 ...
46

47 /* Leftmost block */
48 if(block == 0) {
49 ...
50 }/* Rightmost block */
51 else if(block == num_blocks-1) {
52 ...
53 }
54 /* Block in the center */
55 else {
56 #pragma omp task \
57 input(scenter_ref[CENTER_IN_IDX] >> center_in[B], \
58 sright_ref[LEFT_IN_IDX] >> left_in, \
59 sleft_ref[RIGHT_IN_IDX] >> right_in) \
60 output(sright_ref[RIGHT_OUT_IDX] << right_out, \
61 sleft_ref[LEFT_OUT_IDX] << left_out, \
62 scenter_ref[CENTER_OUT_IDX] << center_out[B])
63 {
64 process_block(POS_CENTER, B,
65 center_in, center_out,
66 &left_in, &left_out,
67 &right_in, &right_out);
68 create_followup_task(ITER_TASK, iter, block, data, N, B, num_iter);
69 }
70 }
71 }
72

73 void seidel_1d_dsa_parctrl(double* data, size_t N, size_t B, int num_iter)
74 {
75 ...
76 int dfbarrier_tokens[blocks];
77 int sdfbarrier __atribute__((stream));
78 ...
79

80 /* Create tasks copying the initial version to the streams */
81 for(size_t block = 0; block < num_blocks; block++) {
82 create_init_task(data, N, B, num_iter, block);
83 create_main_task(data, N, B, num_iter, iter, block);
84 }
85

86 /* Task synchronizing with all terminal tasks */
87 #pragma omp task input(sdfbarrier >> dfbarrier_tokens[blocks])
88 {
89 }
90

91 #pragma omp taskwait
92 }

The enumeration defined in Lines 2 to 5 associates one constant for each type of tasks in the
task graph that potentially creates another task: INIT_TASK refers to an initialization task and
MAIN_TASK stands for a task that processes a block of data. These constants are referenced in
create_followup_task, starting at Line 5 of the listing. The function contains several tests
that help determine whether a follow-up task needs to be created and which kind of task this is.
A main task can either create another main task for the iteration after the next iteration (Line 15)
or a terminal task (Line 18). Which of these tasks must be created depends on the iteration of the
calling task, tested in Lines 14 and 17. In most cases, the task created by an initial task is a main
task of the second iteration, as in Line 24. However, if there is only a single iteration, the indirect
successor of an initial task in the task graph is a terminal task (Line 27).

The functions create_init_task, create_terminal_task and create_main_task
are responsible for the creation of initial tasks, terminal tasks and main tasks, respectively. As in
the previous listing, there are three types of main tasks with different sets of input and output
views: one for the leftmost block, one for blocks in the center and one for the block at the rightmost
position. Listing 5.9 omits the code for the creation of main tasks processing blocks at the left or
the right of the array and only details the task for blocks in the center in Lines 56 to 69. The first
difference to the previous listing is the use of stream references rather than streams in the input
and output clauses. Instead of indexing the arrays of streams scenter, sright and sleft, the
clauses refer to arrays of stream references named scenter_ref, sright_ref and sleft_ref.

89

Chapter 5: Dynamic single assignment

This is necessary due to the technical restriction that streams can only be declared in the local scope
of a function and thus cannot be referenced directly from multiple functions. In the part not shown
in the listing, references to the locally created streams are stored within global arrays of stream
references that can be accessed from any function. The second difference with the previous listing
consists in the additional function call to create_followup_task after the call to process_
block in Line 68, which effectively implements the parallel control program. Note that this call
must be issued from within the task body, otherwise the creation of subsequent tasks would still
be carried out by the root task.

5.4 Implications of dynamic single assignment on the control pro-
gram

As all data of dynamic single assignment tasks is stored in input buffers and as these buffers
are managed by the run-time, memory allocation for most of the data used by an application based
on dynamic single assignment is under the responsibility of the run-time system. While this has
the advantage that the run-time can use optimized algorithms and data structures to manage these
allocations, dynamic single assignment can have a significant impact on the application’s memory
footprint as well as on the locality of data accesses. If input buffers cannot be reused, e.g., if tasks
are created rapidly, such that none of the tasks has terminated before an allocation takes place,
multiple buffers with different versions of the same data elements are kept at the same time, even
though not all of them might be referenced simultaneously. However, even for extensive reuse
of buffers there is a minimal number of versions that must exist at the same time. For each data
element for which multiple versions are produced throughout the execution of the application and
for which each version depends on the previous version, there are at least two versions present
in data-flow frames when a new version is being generated: one is the current version, whose
values are written and the second one corresponds to the previous version that serves as a base to
calculate the new values.

The memory footprint of an application depends on the maximum number of input buffers that
co-exist and is influenced by different factors. In particular, these are (1) the structure of the control
program (sequential or parallel) and (2) dependences between tasks and their order of creation. In
this section, we examine both points by unrolling the steps involved in task creation, allocation
and de-allocation according to the execution model of OpenStream for simple examples. We also
emphasize how the reuse of input buffers influences the locality of accesses to main memory with
respect to NUMA.

5.4.1 Allocations of a sequential control program

The input buffers of a task are allocated when the task is created and remain in use until it
terminates. Whether these allocations increase the memory footprint of the application or not
depends on the state of the free list of the memory pool from which the buffers are allocated. If an
allocation requires a refill operation caused by an empty free list, the footprint increases, while the
footprint remains the same if a buffer from an earlier refill operation can be reused. However, in
order to be reused by a subsequent allocation, an input buffer must be freed to the same memory
pool as the pool used for the subsequent allocation. In the following part, we illustrate that a
sequential control program either inhibits reuse or leads to poor data locality due to the allocation
and de-allocation mechanism used for NUMA-aware memory pooling.

A sequential control program causes all allocations of input buffers to be carried out by a single
task, namely the root task. As this task is executed by a single worker, all allocations are made
within the same memory pool. Let w0 be the worker that executes the control program. The tasks
created by w0 eventually become ready and, if w0 has not finished executing the root task, these
tasks are stolen or activated and executed by other workers. Upon termination of a task, the worker
that executed the task frees the task’s input buffers to the memory pools associated to the nodes
on which the input buffers are located. There are two main scenarios for the placement and thus

90

Chapter 5: Dynamic single assignment

for the de-allocation and reuse of an input buffer. First, if the size of a page is smaller than the
size of a buffer, buffer placement is determined by the initial writer of the buffer as explained in
Section 4.2.2. Reuse of such an input buffer can only take place if the writer is located on the same
node as w0, since only in this case the buffer is freed to the memory pool used by w0. However,
due to the small number of cores per node compared to the total number of cores of a many-core
system, it is more likely that the writer executes on a core of a different node and the buffer is never
used again. Second, if the size of a page of memory is larger than or equal to the size of the input
buffer, the buffer is allocated on the node of w0 as physical allocation and thus data placement have
already been triggered during the refill operation (cf. Section 4.2.1). In this case, the buffer is freed
to the memory pool used by w0 and can rapidly be reused by subsequent allocations. However,
this leads to the use of buffers that are all placed on the node of w0, which results in poor data
locality and high contention on the respective memory controller.

The following examples illustrates the two cases for the reuse of buffers when using a sequential
control program.

Large memory footprint resulting from sequential task creation

Figure 5.3 illustrates the first scenario on the task graph, shown in Figure 5.3a. Every single
task t0, . . . , t7 as well as ti0, . . . , ti7 is created by the root task r. For simplicity, we assume that ti0 to
ti7 are all created before any of the tasks t0 to t7 is created, such that a steal of a task tij results in the
execution of tj by the same worker, since every task tj only has a single dependence and is thus
activated right after the execution of tij . We also assume that w0, w1 and w2 execute on different
NUMA nodes and thus use different memory pools. Furthermore, the size of all input buffers in
the example is identical. Note that ti0 to ti7 do not have predecessors in the task graph and thus do
not have input buffers. The Figures 5.3b to 5.3r show the state of the free list associated to the size
of the input buffers of the memory pool of each worker after each step explained below.

Initially, all lists are empty, as shown in Figure 5.3b. Let w0 be the worker that executes the
control program. Upon the creation of t0, the memory pool needs to be refilled and new buffers are
allocated. In the example, each refill operation allocates only two frames at once (cf. Figure 5.3c).
The creation of t0 activates the previously created task ti0 due to the restriction that all consumers
of a task must have been created before the task can execute. Let w1 be the worker that steals ti0
and which thus becomes the owner of t0 after its execution, as shown in Figure 5.3d. Similarly, w2

becomes the owner of t1 after its creation and a steal of ti1 (Figure 5.3e). When t0 and t1 terminate,
their input buffers are freed to the memory pools of w1 and w2, respectively, as shown in Figure 5.3f.
These buffers cannot be reused by w0 for the creation of t2 and another refill operation in the
memory pool of w0 becomes necessary (Figure 5.3g). The newly created tasks unblock ti2 and
ti3 and cause w1 and w2 to execute t2 and t3 after the steals of ti2 and ti3 (Figures 5.3h and 5.3i).
The input buffers are freed to the memory pools of w1 and w2 (Figure 5.3j), which makes them
unavailable to w0. This process repeats until the last two tasks terminate (Figure 5.3k to 5.3r).

In summary, w0 cannot reuse any of the buffers as all tasks were stolen by workers from remote
nodes. This results in the allocation of a total of eight input buffers by four refill operations.

Extensive reuse with poor data locality and high contention resulting from sequential task
creation

Figure 5.4 illustrates the events related to buffer allocation for the same application with huge
pages causing input buffers to be placed on the allocating node. The first four steps, shown in
Figure 5.4a to Figure 5.4d, are identical to the previous case using small pages. The first difference
appears when the input buffers if t0 and t1 are freed, shown in Figure 5.4e. Instead of freeing them
to the memory pools of w1 and w2, they are handed back to the memory pool of w0. Hence, when
t2 is created, the free list of the memory pool of w0 contains unused buffers and a refill operation is
not necessary 1. Figure 5.4f shows the state of the memory pools when t2 is executed by w1 after
the steal of ti2 by the same worker. Similarly, the buffer formerly used for t0 can be reused for t3 as

1. In practice, task creation is often faster than task execution, such that t2 would likely be created before the input
buffers of t0 and t1 are freed. However, the reuse of input buffers would take place for later task creations starting at the
first de-allocation of an input buffer. To keep this example simple, we assume that buffers are reused immediately.

91

Chapter 5: Dynamic single assignment

(a) Task graph with sequential task creation

Free lists

(b) Initial state (c) Refill operation (d) t0 is executed by w1 (e) t1 is executed by w2

(f) De-allocation of t0 and t1 (g) Refill for creation of t2 (h) t2 is executed by w1 (i) t3 is executed by w2

(j) De-allocation of t2 and t3 (k) Refill for creation of t4 (l) t4 is executed by w1 (m) t5 is executed by w2

(n) De-allocation of t4 and t5 (o) Refill for creation of t6 (p) t6 is executed by w1 (q) t7 is executed by w2

(r) De-allocation of t6 and t7

Figure 5.3: Memory footprint resulting from sequential task creation with small pages

92

Chapter 5: Dynamic single assignment

shown in Figure 5.4g. Upon de-allocation of t2 and t3, the free list of the memory pool of w0 again
contains two buffers which can be reused for future tasks (Figure 5.4h). This pattern of allocations
and de-allocations repeats as shown in Figure 5.4i to Figure 5.4n until all tasks of the task graph
have been executed. In total, only two buffers have been allocated resulting in a smaller memory
footprint compared to the previous example. However, as all buffers are placed on the node of w0,
data locality is poor, resulting in high contention on a single memory controller.

5.4.2 Allocations of a parallel control program

We now show that using a parallel control program leads to a different pattern of allocations
and can both significantly reduce the memory footprint of the application and provide improved
locality of accesses to main memory. To illustrate this, we use the same tasks as in the previous
example, but replace the sequential control program with a parallel control program, in which each
task tj creates a follow-up task tj+2 and each task tij creates tij+2 for j ∈ {0, . . . , 5}. Only ti0, ti1, t0
and t1 are still created by the root task r, as illustrated by the task graph of Figure 5.5a. To keep
the example simple, we assume that small pages are used, which causes all input buffers to be
placed on the node of the workers that perform the first write access. The behavior using huge
pages would be similar to the steps below, as only the placement of the input buffers of t0 and t1 is
affected by the page size.

The steps presented in Figure 5.5b to 5.5d are identical to the steps with a sequential control
program, since the root task still creates t0 and t1. The first difference appears at the execution
of t0 by w1, when the follow-up task t2 is allocated using the memory pool of w1 instead of the
pool of w0. This triggers a refill operation and results in the addition of two input buffers to the
free list of the memory pool used by w1 (Figure 5.5e). The first element from the free list is used
for t2 and upon termination of t0 the input buffer of t0 is added at the front of the list, resulting
in the state shown in Figure 5.5f. Similarly, w2 performs a refill operation during execution of
t1 (Figure 5.5g), removes an input buffer for t3 and pushes the old buffer of t1 onto the free list
(Figure 5.5h). Figure 5.5i shows how previously allocated buffers are reused: the old buffers of t0
and t1 are used as the input buffers for t4 and t5. Similarly, the old buffers of t2 and t3 are used for
t6 and t7 in Figure 5.5j and the old buffers of t4 and t5 are added to the free list. When all tasks
terminate, only 6 buffers have been allocated in total (Figure 5.5k).

Note that in contrast to the sequential control program with huge pages, the footprint increases,
but data locality is similar to the sequential control program with small pages as w1 and w2 mostly
operate on input buffers allocated from their own memory pools.

This example shows that work-stealing is an essential mechanism that spreads the execution of
the parallelized control program over the machine and leads to task creations by other workers
than the one executing the root task. This causes refill operations to be carried out on multiple
memory pools and thus results in better distribution of the data across memory controllers and
increases data locality. However, where an input buffer is allocated and whether an existing buffer
can be reused varies with the total number of tasks and workers as well as on the timing of events
at execution time as these have a strong influence on work-stealing. Hence, it is difficult to predict
the exact memory footprint of an application only based on information about the task graph, the
control program and the machine.

5.4.3 Estimation of the memory footprint

Although the exact memory footprint is difficult to predict, it is possible to provide upper and
lower bounds for the number of buffers that are allocated throughout the execution for a given
task graph. We illustrates this on the task graphs of Figure 5.3a and Figure 5.5a.

Let nr be the number of buffers allocated by a single refill operation and let nt be the number
of tasks in a program with the same characteristics as the program of the previous examples. For a
sequential control program and small pages, the total number of buffers N small

seq allocated by refills

93

Chapter 5: Dynamic single assignment

(a) Initial state (b) Refill operation (c) t0 is executed by w1 (d) t1 is executed by w2

(e) De-allocation of t0 and t1 (f) t2 is executed by w1 (g) t3 is executed by w2 (h) De-allocation of t2 and t3

(i) t4 is executed by w1 (j) t5 is executed by w2 (k) De-allocation of t4 and t5 (l) t6 is executed by w1

(m) t7 is executed by w2 (n) De-allocation of t6 and t7

Figure 5.4: Memory footprint resulting from sequential task creation with huge pages

94

Chapter 5: Dynamic single assignment

(a) Task graph with parallel task creation

(b) Initial state (c) Refill operation (d) t0 is executed by w1 (e) Refill by w1

(f) De-allocation of t0,
execution of t2

(g) Refill by w2 (h) De-allocation of t1,
execution of t3

(i) De-allocation of t2, t3,
execution of t4, t5

(j) De-allocation of t4, t5, execution of t6, t7 (k) De-allocation of t6, t7

Figure 5.5: Memory footprint resulting from parallel task creation

(a) Tasks of the same type, between iterations

(b) Between indirect successors

Figure 5.6: Order of task creations in a parallel control program

95

Chapter 5: Dynamic single assignment

is constrained as follows:

nr ≤ N small
seq ≤

⌈
nt
nr

⌉
· nr

The minimal number of allocations is achieved when all tasks created by the root task are stolen by
workers operating on the same node as the worker executing the root task and if all buffers are
freed in time right before an allocation, resulting in maximal reuse. The upper bound corresponds
to a scenario where all tasks are stolen by workers that use a different memory pool, preventing
any buffer from being reused at task creation. Note that it is more likely that the footprint reaches
the upper bound, since the number of workers per node is generally much lower than the total
number of workers. For sequential control programs and huge pages the bounds are identical, but
can result from different situations:

nr ≤ N
huge
seq ≤

⌈
nt
nr

⌉
· nr

For the minimal footprint, it is no longer required that only workers of the same node steal tasks
and it is sufficient that buffers are handed back to the memory pool of the creating worker in time.
The maximal footprint occurs for the worst possible timing, where none of the buffers is freed
before creation of the last task. In general, it is unlikely that the footprint reaches the maximum,
since the duration of the root task is usually higher than the duration of a task, which makes it
likely that buffers are reused.

For a parallel control program, the number of buffers allocated by refills varies with the number
of parallel chains of task creation nchains. To avoid limiting the parallelism of the application, this
number should be equal or greater than the number of workers nw. For nchains = nw and small
pages the number of buffers is:

nr ≤ N small
par ≤

⌈
nchains

nr

⌉
· nr︸ ︷︷ ︸

Sequential creation
of the heads of

each chain

+(nw − 1) · nr︸ ︷︷ ︸
One refill for

each remaining
worker

=

(⌈
nchains

nr

⌉
+ nw − 1

)
·nr =

(⌈
nw
nr

⌉
+ nw − 1

)
·nr

The minimal number of allocations is reached if (1) every chain is stolen by a worker of the same
node as the worker executing the root task, (2) nr ≥ 2 and thus sufficient buffers for the stolen
chain and the next task in the chain exist and (3) all tasks of the chain terminate before the head of
the second chain started by the root task. The maximum number of buffers is allocated if every
chain is stolen by a different worker and if all workers operate on different nodes. The upper and
lower bounds for huge pages are identical:

nr ≤ N
huge
par ≤

(⌈
nw
nr

⌉
+ nw − 1

)
· nr

Similar to the sequential control program with huge pages, the minimal number does not require
that steals are carried out by workers of the same node as the worker executing the root task. This
is due to the circumstance that every worker hands the buffers allocated by the root task back to
the same memory pool. As far as the upper bound is concerned, it is reached whenever the last
chain is created before any of the previous chains has terminated.

While the upper bounds for N small
seq and Nhuge

seq are constrained by the number of tasks, the upper

bounds of N small
par and Nhuge

par are constrained by the number of workers. As the number of tasks is
generally much higher than the number of workers, a parallel control program thus yields a lower
memory footprint.

5.4.4 The order of task creations in a parallel control program

In the previous examples, we have neglected inter-task dependences and assumed that all tasks
besides pairs of tasks formed by tj and tij for 0 ≤ j ≤ 7 are independent. However, the dependence

96

Chapter 5: Dynamic single assignment

(a) (b)

Figure 5.7: Concurrent task creation with different matching of the views

pattern in conjunction with the order of task creation determines how many tasks remain blocked.
For example, in Figure 5.6, there are four task types a, b, c and d, which are instantiated for three
iterations. In the task creation pattern of Figure 5.6a, each task creates its successor for the next
iteration, skipping three tasks in between. The task of the next iteration can only become ready
when all tasks in between have terminated. For example, a2 can only start execution when b1, c1
and d1 have terminated. During that time, the input buffers of b2, c2 and d2 are allocated by b1, c1
and d1, respectively. As the created tasks remain blocked, their input buffers are not available for
reuse and the number of input buffers that coexist depends on the distance between two iterations.

In Figure 5.6b the creation scheme is different. Instead of instantiating a task of the same
type for the next iteration, each task allocates its indirect successor. As the distance between the
creating task and the task that is being created is smaller than in the example before, the number of
data-flow frames that coexist is lower, leading to a smaller memory footprint. Due to the restriction
that the consumers of a task must be created before the task can start execution this distance cannot
be reduced further.

Implementing a parallel control program in which all tasks create their indirect successors is
often a lot more complicated than developing a pattern with creations between iterations. However,
depending on the actual task graph the creation of tasks with the minimal distance can reduce the
memory footprint significantly. A good example for such a program is the bitonic sorting network
presented in Section 6.1.4, where the number of tasks per iteration increases with each iteration.

5.5 Parallelizing the control program

After the examples of parallel control programs and the discussion of the implications on data
locality and the memory footprint we now discuss the restrictions that a parallel control program
is subject to. In Section 3.1, we assumed that the control program creates all tasks sequentially. This
limitation guarantees reproducible results for the mapping of views to stream elements, which
ensures that the same producers are matched with the same consumers for each execution with
deterministic results. If task creations and matchings of views would take place concurrently
without any restriction, the set of stream elements a view provides access to could vary between
two executions, depending on the exact timing. As a result, the order of values in a stream
could vary from one run to another. For example, if the producers of Figure 3.5a on page 39 are
created concurrently, the elements in the input buffer of the consumer are not necessarily stored in
ascending order as specified for the sequential control program and can be shuffled, such as in
Figure 5.7a and 5.7b.

In this section, we first point out the performance drawbacks not related to data locality or
the memory footprint resulting from sequential task creation and sketch how a parallel control
program increases performance. We then define the conditions under which parallel task creation
preserves deterministic mappings of views to stream elements and sketch how a parallel control
program can be derived from a sequential one.

97

Chapter 5: Dynamic single assignment

c c c c c c c c c c c c c

Task execution

c Task creation

...

...

...

...
c c

Task steal

Time

(a) Four workers

c c c c c c c c c c c c c

...

...

...

...
c c

...

Time

(b) Five workers

Figure 5.8: Sequential control program with a different number of workers

5.5.1 Rate of task creation

In the execution model of OpenStream all workers are created at the very beginning of program
execution. When all workers are ready, one of them starts execution of the root task. In case of
a sequential control program the control program is part of the root task and is thus executed
by the same worker. The remaining workers are initially idle and try to obtain tasks through
work-stealing. Thus, it is very likely that a newly created task that has become ready is immediately
stolen and executed by a worker in parallel with the execution of the control program. Ideally,
ready tasks are provided as fast as possible after the start of the control program, such that idle time
of the remaining workers on startup is minimized and the arrival rate of these tasks is sufficiently
high to provide enough tasks for execution afterwards.

Let tc be average time that is necessary to create a new task, i.e., the duration that it takes the
run-time to set up its data structures and to perform calls to resolve_dependences for each of
its views. Let te be the average time for the execution of a task and let tr be the time on average
between the moment when a task has been created and the moment when it becomes ready. If a
task has neither input dependences nor output dependences, tr is zero and the task becomes ready
immediately after its creation. Let N denote the number of workers and, as a matter of simplicity,
assume that all tasks are entirely independent. As long as the control program creates tasks at
a higher rate than the remaining N − 1 workers execute them, the fact that the control program
is sequential does not have an impact on the performance of the application. However, if tasks
are executed faster than the rate of creation, workers become idle after the execution of a task,
resulting in under-utilization of the hardware resources.

In the initial and terminal phase of an application at the beginning and at the end of the control
program, only a subset of workers are busy. If these phases are neglected, the creation rate can be
considered sufficiently high if the inequation te

tc
> N − 1 holds. If the inequation does not hold,

there are idle phases between task executions and the creation rate is too low. Figure 5.8 illustrates
these situations. In Figure 5.8a, the control program creates tasks fast enough, such that none of
the four workers becomes idle. However, as can be seen in Figure 5.8b with the same values for tc
and te, the rate of creation is too low to keep an additional worker busy and idle phases occur.

For a huge number of workers, sequential task creation can even dominate the execution time.
Let M be the number of tasks. The time tseq needed for sequential execution of the entire program
is:

tseq =M · tc +M · te =M · (tc + te)

For parallel execution, the longest sequential part is either the control program or the duration to
execute the tasks on the critical path. Let tmax be the duration of the slowest task. For independent
tasks and a sufficiently high number of processors, the minimal execution time is max{M · tc, tmax}
according to Amdahl’s Law. For a large number of workers and a large number of tasks, it is thus
likely that sequential task creation dominates the execution time of the parallel program.

98

Chapter 5: Dynamic single assignment

(a) Multiple chains (b) Tree-like structure (c) Different durations

Figure 5.9: Examples of task graphs for which the order of task creation has an influence on performance

5.5.2 Order of task creations

In the discussion above, we assumed that tasks are completely independent and can therefore
start execution immediately after creation. While this assumption is suited to illustrate the relation-
ship between the task creation rate and performance, it is unrealistic for real-world applications as
these usually have more complicated task graphs. Besides a few initialization tasks copying data
from shared memory to streams at the beginning of the execution, the tasks of all the benchmarks
presented in the next chapter have at least one input dependence. The order in which these tasks
are created defines how fast they can become ready and is therefore crucial for performance. There
are two major issues that should be taken into consideration when the order of task creation by the
control program is determined.

First, the structure of the task graph is important and should be taken into account. Tasks with
shorter paths from a task whose dependences have already been satisfied are good candidates
for creation, as they are likely to become ready sooner than others. For example, the tasks tji with
i ∈ {0, . . . , n} and j ∈ {0, . . . ,m} in Figure 5.9a with chain-like dependences should be created
column-wise from left to right and not from right to left or row-wise. However, it must be taken
into account that output dependences also have an effect on the readiness of a task. As output data
is written to the consumers’ input buffers, a producer cannot start execution before the creation of
its dependent tasks. Hence, strict column-wise creation of the tasks in the example, i.e., creating t0i
to tmi before t0i+1 to tmi+1, delays the execution at the beginning, since t00 is only ready upon creation
of t01 with m− 1 task creations in between. To unblock tasks more rapidly, it would be preferable
to start by first creating pairs of tasks tj0 and tj+1

0 and to proceed strictly column-wise afterwards.
Figure 5.9b shows an example of a task graph in which the creation of a consumer is required to
unblock multiple producer tasks. None of the producers p0 to pm can execute before c has been
created. Hence, instead of creating p0 to pm before c, the control program should create c first, such
that an additional producer becomes ready at each subsequent task creation.

The second issue we would like to discuss is related to the duration of each individual task.
The length of a path in the task graph to a task that is ready for execution does not necessarily
reflect the duration until activation. For example, in Figure 5.9c, the task labeled f executes faster
than the task labeled s, indicated by the size of the tasks in the figure. Thus, creating b0, b1 and b2
before t0, t1 and t2 unblocks tasks faster than the other way around.

Creating a sequential control program with optimal order with respect to the task graph that is
to be constructed is often a non-trivial task. In addition, how fast an application executes tasks
and how fast it makes progress within the task graph can be difficult or even impossible to predict.
Parallelizing the control program, such that tasks are able to create their indirect successors in the
task graph can thus be advantageous, as task creation and task execution progress together.

99

Chapter 5: Dynamic single assignment

yes yes yesyes

(a) Start of the execution with an
unknown number of tasks

noyes noyes yes yesyes

Term.
detect.

yes

(b) Termination

Figure 5.10: Parallel control program with termination detection

5.5.3 Dynamic dependence patterns and termination detection

In some cases, it is even impossible to implement an application with a strictly sequential
control program that does not synchronize with the tasks it creates using a taskwait barrier. For
example, if the number of tasks of the program is finite, but unknown at the beginning of the
execution, the control program cannot determine when task creation should stop. An example of
such an application is the k-means benchmark presented in Section 6.1.6, whose control program
must create a certain number of tasks for each iteration of the algorithm. The number of iterations,
however, depends on the actual input data and is only known upon termination detection that
takes place in the course of the execution. To stop the creation of tasks for future iterations, the
task that detects the termination of the algorithm must synchronize with the control program.
However, this cannot be done by passing data to the root task through a stream, since input data
of a task can only be provided before a task is executed.

A parallel control program, in which tasks create their indirect successors is able to stop task
creation based on the information that is available during execution. Figure 5.10 illustrates this
concept on a simple task graph composed by a chain of tasks. In addition to a producer-consumer
relationship between ti and ti+1 for the actual data the graph also contains control dependences
whose data indicates whether task creation should be stopped or if it should continue. At the
beginning of the execution shown in Figure 5.10a the total number of tasks of the chain is unknown,
but each task is capable of detecting whether another task is needed. Initially, the root task creates
t0 and t1 and t0 becomes ready for execution. Each task that does not detect that the application
should terminate indicates to its successor that task creation should continue, as indicated by the
edges labeled yes. Eventually, one of the tasks detects that the algorithm has finished. Let this task
be tn shown in Figure 5.10b. As the successor of tn, tn+1, was created before the execution of tn,
the chain of tasks cannot end with tn. In addition, tn cannot stop task creation neither, since tn+1

can only execute when its successor has been created due to the task’s output dependence. Hence,
an additional task tn+2 must be created whose input view matches the output view of tn+1. If this
task was not created, the application would deadlock and the program would not terminate. The
task tn+2 forms the end of the chain and therefore does not have an output dependence. When
tn+1 is executed, it first checks the value received through the control dependence and detects that
task creation has stopped. This prevents an additional task tn+3 from being created and leads to
proper termination.

5.5.4 Conditions for the parallelization of the control program

As discussed above, using a parallel control program can have a positive impact on performance
as well as on the memory footprint of the application. However, as shown at the beginning of
this section, parallelization of the control program can lead to indeterministic behavior. In the
following part, we show that determinism can be preserved if the parallelization verifies certain
restrictions.

The condition for deterministic behavior of a parallel control program is that for all possible
executions, the views of each task provide access to the same streams and the same elements.
Starting from a sequential control program, this means that the parallel control program must
yield the exact same matchings as the sequential control program for each possible execution.

100

Chapter 5: Dynamic single assignment

(a) Creation of a consumer (b) Creation of indirect consumers

(c) Crossed creation (d) Non-crossed creation

Figure 5.11: Deadlocking and non-deadlocking parallel task creation

Let τC , τM , τR : T∞ → N0 be functions that indicate when a task is created (τC), when all
of a task’s views have been matched to a set of stream indexes (τM) and when a task becomes
ready (τR). Due to the order of these events in the life cycle of a task, the inequation t ∈ T∞:
τC(t) < τM (t) < τR(t) holds for all tasks t ∈ T∞. Note that τM (t) and τR(t) are not necessarily the
same. For example, if a task has an output view on a stream and the consumer on this stream has
not been created yet, the indexes of the elements that are accessible by the view are known upon
the call to resolve_dependences, but the task only becomes ready when the input view of the
consumer is matched.

Let further Tseq = 〈t0, t1, t2, . . .〉 be the totally ordered set of tasks created by a sequential
control program with τC(ti) < τC(ti+1). To keep the definitions simple, we assume that a task
can reference a stream at most in one of its views. Let τS : T∞ × S → N0 be a partial function
that indicates when a task’s view accessing a stream has been matched. For each stream s ∈ S
there are two totally ordered sets of tasks T sseq,R = 〈tR1 , tR2 , . . .〉 and T sseq,W = 〈tW1 , tW2 , . . .〉 with
τS(t

R
j , s) < τS(t

R
j+1, s) and τS(tWk , s) < τS(t

W
k+1, s). These sets can be obtained by selecting in order

only the tasks from Tseq that read from or write to s. We define that Tseq and one of its permutations
T ′seq are equivalent if for all streams s the ordered sets T sseq,R and T sseq,R

′ as well as T sseq,W and
T sseq,W

′ are identical.
Let Tpar = {p1 = 〈t11, t12, . . .〉, p2 = 〈t21, t22, . . .〉, . . .} be the set of all possible orders of task

creations that can result from the execution of a parallel control program. If for all Tpar ∈ Tpar and
s ∈ S the equations T sseq,R = T spar,R and T sseq,W = T spar,W hold, then the parallel control program
is equivalent to the sequential control program. As all matchings are identical to those of the
sequential control program, deterministic execution is thus preserved.

5.5.5 Sketching deterministic parallel task creation

The development of a method for the construction of a parallel control program from a se-
quential control program is beyond the scope of this thesis. Hence, we only provide a sketch
of how we have parallelized the control programs of most of the applications used in the ex-
perimental evaluation of this thesis and leave the development of a general method as a per-
spective for future work. In order to make concurrent matchings of views on the same stream
impossible, each stream is used to synchronize only two tasks: one task takes the role of the
producer on the stream and the other task is the consumer. For any order of calls to resolve_
dependences of the two views on a stream, i.e., calling resolve_dependences for the input
view before calling the functions for the output view or vice-versa, the input and output view
provide access to the same set of stream elements. Using the definitions above, this results in
∀s ∈ S : |T spar,R| = |T spar,W | = 1 ∨ |T spar,R| = |T spar,W | = 0. This makes it impossible that the order of
values of the elements of a stream varies between executions. This also implies, that the order of
creation of these tasks does not have any influence on the matching on the streams, which finally

101

Chapter 5: Dynamic single assignment

facilitates the development of a parallel control program.
However, although the order of calls to resolve_dependences can be arbitrary while pre-

serving the order of stream elements, the task creation relationships, i.e., which task creates another
task, is constrained. In particular, the control program must ensure that there are no deadlocks
resulting from the restriction that a task can only become ready when all of its consumers have
been created. Figure 5.11a and 5.11c illustrate task graphs and parallel control programs that result
in a deadlock due to this restriction. In the first case, shown in Figure 5.11a, each task creates its
direct consumer. However, the creation of a consumer takes place when the producer executes, but
this requires that the producer has become ready, which in turn requires that the consumer has
already been created. This phenomenon is not limited to direct producer-consumer relationships.
For example, in the task graph and control program of Figure 5.11c there are no task creations
between direct successors in the task graph, but the structure of the dependences still leads to a
deadlock. The task t0u requires that t1u has been created and creates t1l . However, t1u is created by
t0l , which in turn requires that t1l has been created. The solution for the problems shown in the
figures is given in Figure 5.11b and 5.11d. In Figure 5.11b, each task creates its indirect successor
in the task graph, as seen for seidel-1d. In Figure 5.11d, the creation of t0u and t0l is now done by t.
Furthermore, t0u and t0l create their indirect successors.

These examples illustrate that the dynamic task graph resulting from the sequential control
program must be analyzed carefully in order to avoid deadlocks when creating tasks with output
dependences. Hence, providing a generic method for the construction of a parallel control program
is a non-trivial task.

5.6 Summary
In this chapter, we introduced dynamic single assignment, which allows the run-time to

determine the working set of a task and allows it to control where the data accessed by a task
is placed through the allocating of input buffers. We provided an informal methodology for the
implementation of programs based on dynamic single assignment and illustrated this methodology
on a simple one-dimensional stencil code. We examined the influence of sequential control
programs on the memory footprint, data locality and contention on memory controller and
motivated that applications using dynamic single assignment benefit from the implementation of
a parallel control program. The conditions for the parallelization of a control program are out of
the scope of this thesis and could thus only be outlined.

In the next chapter, we present a set of high performance scientific benchmarks based on
dynamic single assignment and describe the experimental setup for the experiments conducted in
this thesis.

102

6 Experimental Setup

To demonstrate that the optimizations presented in this thesis apply to real-world applications
and thus to show that they are practically relevant, we evaluate our concepts on a set of applications
executing on machines with contemporary hardware architectures. The purpose of this chapter
is to provide an overview of these applications as well as on the hardware environment used for
evaluation. We introduce a set of high performance, scientific applications implemented using the
language extensions of OpenStream of Chapter 3 and dynamic single assignment described in
Chapter 5 and describe the memory hierarchy of the many-core systems used in our experiments.
Furthermore, we provide a methodology for measurements and show which events are quantified.

The chapter is structured as follows. In Section 6.1 we provide an overview of the benchmarks
used for evaluation as well as details on their implementation using dynamic single assignment
presented in the previous chapter. Section 6.2 presents the different baselines for the evaluation
and introduces shared memory programming using tokens for synchronization used in one of
the baselines. The methodology for the measurement of the execution time and the collection of
statistics using hardware performance counters is explained in Section 6.2.3, which introduces
the definition of the measurement interval. Details about the hardware environment are given in
Section 6.3 that describes the two test platforms used for the execution of the benchmarks. The
parametrization of the benchmarks, e.g., the size of input data and the granularity defining the
amount of work per task is presented in Section 6.4. To estimate which benchmarks are most
sensitive to the locality of memory accesses, Section 6.5 provides an overview of the characteristics
of the applications with respect to the memory hierarchy. The chapter finishes with an analysis
of the scalability of the applications of the shared memory baseline in Section 6.6 to show that
interleaved allocation across all nodes is essential for performance. Parts of this chapter were
previously published in [46].

6.1 Benchmarks

For the experimental evaluation of the concepts presented in Chapters 7, 8 and 9, we have
implemented a set of high performance, scientific benchmarks. These applications can roughly
be divided into four categories: stencil computations (seidel, jacobi, and blur-roberts), integer sorting
(bitonic), clustering (k-means) and linear algebra (cholesky). In this section, we provide an overview of
these benchmarks and briefly describe their implementations.

Chapter 6: Experimental Setup

6.1.1 Seidel

The seidel benchmark implements the Gauß-Seidel method, which iterates a five-point stencil
over a two-dimensional, dense N ×N matrix of double precision floating point elements with N
being a power of two. Similar to the one-dimensional stencil presented in Section 5.3, the value vix,y
of an element of an iteration i at position (x, y) in the matrix is calculated by taking into account
values from the previous iteration i− 1 as well as the current iteration, but in two dimensions:

vix,y =
1

5

(
vix−1,y + vix,y−1 + vi−1x,y + vi−1x+1,y + vi−1x,y+1

)
Elements at the border of the matrix are treated as if the values of the missing neighbors were zero.
For example, the element in the corner at position (0, 0) is updated as follows:

vi0,0 =
1

5

(
0 + 0 + vi−1x,y + vi−1x+1,y + vi−1x,y+1

)
=

1

5

(
vi−1x,y + vi−1x+1,y + vi−1x,y+1

)
As processing of the elements of the entire matrix in a single task would limit parallelism

and thus lead to poor performance, the matrix is tiled into blocks of SB · SB elements, each
treated by a separate task performing a single iteration on the tile. The number of tasks per
iteration is thus N2

S2
B

. However, not all of these tasks can execute in parallel, since each block
relies on data from its neighborhood, as illustrated in Figure 6.1a. A subset of the dynamic
task graph showing the producers and consumers of a task biX,Y , calculating the values of the
ith iteration on the block at coordinates X,Y , is given in Figure 6.1b. The values generated by
this task belong to the elements that are within the square-shaped block of the matrix, which
are {vix,y|X · SB ≤ x < (X + 1) · SB ∧ Y · SB ≤ y < (Y + 1) · SB}. The graph contains two
types of dependences: heavy dependences between tasks that treat the same block at different
iterations (e.g., between bi−1X,Y and biX,Y or between biX,Y and bi+1

X,Y) and light dependences between
neighboring blocks of the same iteration (e.g., between biX,Y and biX+1,Y or between biX,Y and
biX,Y+1) or neighboring blocks across iterations (e.g., between biX,Y and bi+1

X−1,Y or between biX,Y
and bi+1

X,Y−1). The heavy dependences correspond to data dependences for entire blocks, which
consist of SB · SB elements, while light dependences represent data dependences for the borders
of blocks and only comprise SB elements. The value Sdbl in the task graph stands for the size of a
double precision floating point value of eight bytes.

The data of a block is processed by two nested loops iterating over the x and y coordinates
of the elements of a block. Throughout the execution of these two loops, each data element is
read multiple times. It is therefore crucial for performance that a block fits into the cache of the
processor to avoid repetitive accesses to main memory for the same elements. Hence, SB must be
chosen such that SB · SB · Sdbl is smaller than the cache capacity associated to a single core.

Similar to the implementation of the one-dimensional version of the benchmark, elements at
the borders of a block are read by more than one task and need to be copied to two streams. The
first stream is used to pass the whole block to the task treating the same block at the next iteration
and the other stream is used to pass the elements to the task treating the neighbor block. This is
shown in Figure 6.1c. Figure 6.1d combines the illustrations of Figure 6.1b and 6.1c and shows the
data dependences of a single task, the elements of a block and the copied elements at the borders.

The parallel control program is also similar to the one-dimensional version of the benchmark
as each task biX,Y creates its indirect successor along the path of heavy dependences, i.e. the task
processing bi+2

X,Y . Figure 6.1e shows a three-dimensional illustration of a task graph that includes
the scheme for task creation for 16 blocks and four iterations. The vertical axis in this illustration
represents the iterations, while the other two axes indicate the block coordinates of the block treated
by a task. Note that neither the tasks in the center of the cube nor the dependences from and to
these tasks are shown in order to keep the figure readable. To be used as a drop-in replacement for
a sequential version operating on a global matrix in shared memory, i.e. whose elements are not
stored in streams, the benchmark requires two types of auxiliary tasks. The first type corresponds

104

Chapter 6: Experimental Setup

Current iteration

Previous iteration

Current block

(a) Illustration of the stencil pattern (b) Dynamic task graph (excerpt)

copy copy

copy

copy

Right neigh-
bor, same
iteration

Left neigh-
bor, next
iteration

Top neighbor,
next iteration

Bottom neighbor,
same iteration

(c) Data at the borders copied to multiple streams

Left neighbor

(X-1, Y)
Top neighbor

(X, Y+1)

Right neighbor

(X+1, Y)
Bottom neighbor
(X, Y-1)x

i

y

(d) Tiling and data dependences

x

i

y

(e) Illustration of the control program
x

i

y Initial
tasks

Terminal
tasks

(f) Illustration of the control program including
auxiliary tasks

Figure 6.1: Seidel: two-dimensional five-point stencil

y

x

i

(a)

y

x

i

(b)

y

x

i

(c)

y

x

i

(d)

y

x

i

(e)

y

x

i

(f)

Figure 6.2: Seidel: progress within the task graph

105

Chapter 6: Experimental Setup

to initial tasks that copy data from shared memory to streams and that execute before the tasks
that carry out the actual computation of the stencil. The second type consists of terminal tasks
that copy the data back to shared memory and which are thus needed at the end of the execution.
Figure 6.1f shows the tasks of Figure 6.1e, but also includes the auxiliary tasks. The purpose of the
root task (not shown in the graph) is the creation of the initial tasks as well as the tasks for the first
iteration. If the number of iterations is smaller than two, the root task also creates the terminal
tasks, as these tasks do not have indirect predecessors.

Due to the dependences between tasks within and across iterations, execution starts at the lower
left corner of the matrix at block coordinates (0, 0) at the front of the three-dimensional illustration.
Afterwards, execution progresses along the dependences, from left to right, from front to the rear
and from the bottom to the top as shown in Figure 6.2. Hence, in a first phase, the number of tasks
that are ready for execution increases, resulting in growing parallelism (Figure 6.2a to 6.2c). Once
the maximum number of tasks ready for execution has been reached, parallelism declines until the
task at the upper right corner at the rear of the three-dimensional representation is executed at the
very end (Figure 6.2d to 6.2f).

6.1.2 Jacobi

The two-dimensional version of the jacobi benchmark, jacobi-2d, is a five-point iterative stencil
operating on a dense, N ×M matrix of double precision floating point values with N and M
being powers of two. The code of this benchmark is inspired by an implementation from the POLY-
BENCH [75] suite with characteristics similar to the seidel benchmark presented above. The matrix
is processed in tiles of size SB,N × SB,M with SB,N |N and SB,M |M , resulting in N ·M

SB,M ·SB,N
tasks

per iteration. However, in contrast to seidel, jacobi-2d does not have intra-iteration dependences and
each value generated for the ith version of an element only depends on values from the previous
iteration i− 1:

vix,y =
1

5

(
vi−1x−1,y + vi−1x,y−1 + vi−1x,y + vi−1x+1,y + vi−1x,y+1

)
Figure 6.3a illustrates the principles of this calculation. The division into blocks is identical

to seidel with similar dependences for each task, as shown in Figure 6.3b and Figure 6.3c. The
absence of intra-iteration dependences in Figure 6.3c manifests as the absence of arrows pointing
from the top towards the task in the middle. The parallel control program is identical to seidel and
each task creates its indirect successor in the task graph along the iteration dimension, i.e. the task
processing the same block at the iteration i+ 2. Figure 6.3d illustrates the control program for 16
blocks and four iterations, including auxiliary tasks copying data from shared memory to streams
as well as auxiliary tasks writing the results back to shared memory.

Although the task graph of jacobi-2d is similar to seidel, execution progresses differently within
the task graph during execution due to the missing intra-iteration dependences. In contrast to the
triangle-shaped wavefront of seidel, the wavefront of jacobi-2d can have a rectangular shape and
the program can advance iteration by iteration as shown in Figure 6.4. However, this pattern of
progress is not unique and is only likely to occur for a high number of workers. If the number of
workers is lower than the number of blocks, it is more likely that tasks of later iterations execute in
parallel with tasks of earlier iterations, leading to dynamic pipelining effects. Examples of such
cases are given in Figure 6.5, showing triangular-shaped wavefronts similar to seidel (Figure 6.5a
and 6.5b) as well as progress in a pyramid-like fashion (Figure 6.5c and 6.5d). Which progress
pattern occurs at execution time depends on the number of workers, on the order of the creation
of auxiliary tasks as well as on the timing of task execution due to dynamic events such as
work-stealing.

In addition to the two-dimensional version, we have also implemented a one-dimensional
version, jacobi-1d implementing a three-point stencil as well as a three-dimensional version of the
benchmark, jacobi-3d implementing a nine-point stencil with similar characteristics.

106

Chapter 6: Experimental Setup

Current iteration

Previous iteration

Current block

(a) Illustration of the stencil pattern (b) Dynamic task graph (excerpt)

x

i

y
Left neighbor

(X-1, Y)
Top neighbor

(X, Y+1)

Right neighbor

(X+1, Y)
Bottom neighbor
(X, Y-1)

(c) Tiling and data dependences
x

i

y Initial
tasks

Terminal
tasks

(d) Illustration of the control program including
auxiliary tasks

Figure 6.3: Jacobi-2d: two-dimensional five-point stencil

y

x

i i

(a)

y

x

(b)

y

x

i

(c)

y

x

i

(d)

y

x

i

(e)

y

x

i

(f)

Figure 6.4: Jacobi-2d: progress within the task graph for a high number of workers

y

x

i

(a)

y

x

i

(b)

y

x

i

(c)

y

x

i

(d)

Figure 6.5: Jacobi-2d: progress within the task graph depending on the timing

107

Chapter 6: Experimental Setup

6.1.3 Blur-roberts

The blur-roberts benchmark [59] carries out the stencil computations of two kernels used in
image processing on a dense N ×M matrix of double precision floating point elements, processed
in blocks of size SB,N × SB,M , with SB,M |N and SB,N |M . The application first applies a blur filter
on each element of the two-dimensional input matrix, averaging the values of the eight neighbors
surrounding the element and the element itself. In a second step, the algorithm applies the Roberts
Cross Operator used for edge detection involving the lower left element, the element right below,
the left element and the element itself. At the end of this operation, the result is written back to
the original matrix. An illustration of the two steps for a single block is given in Figure 6.6a and
Figure 6.6b. According to the description of the two steps the final value v′′x,y of an element at the
position (x, y) in the output matrix is calculated as follows:

v′′x,y = v′x,y − v′x−1,y+1 + v′x,y+1 − v′x−1,y with

v′x,y =
1

9
(vx−1,y−1 + vx,y−1 + vx+1,y−1 + vx−1,y + vx,y + vx+1,y + vx−1,y+1 + vx,y+1 + vx+1,y+1)

In contrast to seidel and jacobi, blur-roberts only performs a single iteration on each block. To
limit the overhead related to the execution of auxiliary tasks, the application does not use dedicated
tasks to copy data from shared memory to streams and from streams back to shared memory.
Instead, initial data is read from shared memory directly by blur tasks and final data is written
back by tasks applying the Roberts Cross Operator. Hence, streams are only used to exchange
data between the blur tasks and the tasks applying the Roberts Cross Operator. Similar to seidel
and jacobi, data needed by multiple tasks is copied to several streams. From a block’s perspective
these are the elements at the top row, the upper right corner and the right column as shown in
Figure 6.6c.

One of the key characteristics of blur-roberts are the short dependence paths including only
two tasks per block, namely the blur filter and the Roberts Cross Operator. Figure 6.6d shows the
dependences from the perspective of a single task of the blur filter. The task bX,Y designates a blur
task operating on block (X,Y) and rX,Y is a task that applies the Roberts Cross Operator on the
block with the block coordinates (X,Y). Besides the main dependence between bX,Y and rX,Y for
the block data of size SB · SB multiplied with the size of a double precision floating point value
Sdbl, the graph also contains dependences for the right and top border of a tile, i.e. a dependence
of SB elements between bX,Y and rX+1,Y and a dependence of the same size between bX,Y and
rX,Y+1, as well as a dependence for the upper right corner of the tile of a single element between
bX,Y and rX+1,Y+1. The remaining dependences of a single integer of size Sint ensure that the
values of the input matrix are not overwritten before they have been read by the corresponding
tasks carrying out the blur filter as explained below.

When the blur filter is applied to a block, the task associated to this block both reads values
from within the block and from the direct neighbors, as shown in Figure 6.6e. As the final data is
written back to the original matrix, it must be ensured that the Roberts Cross tasks operating on
neighboring blocks do not overwrite the original values before the blur task has finished reading
all of the required elements. Without protection, it would be possible that the blur filter operates
with data already updated by a Roberts Cross Task as shown in Figure 6.6f. To avoid these early
updates of the original matrix, each Roberts Cross Operator task requires the permission of the
neighboring blur tasks, which is modeled as a data dependence of a single integer element.

Due to the absence of dependences between blur tasks, all blur tasks can execute in parallel.
The available parallelism at the beginning of the execution is thus only limited by the rate of task
creation and progress can be made on any part of the matrix. As far as the Roberts Cross Operator
tasks are concerned, parallelism is limited by the number of completed blur tasks as well as the
location of the blocks associated to these tasks.

108

Chapter 6: Experimental Setup

Original
matrix

Stream
data

(a) Blur filter

Original
matrix

Stream
data

(b) Roberts Cross Operator

copy

copy copy

Right
neighbor

Top
neighbor

Top right
neighbor

(c) Data at the borders copied
to multiple streams

(d) Dynamic task graph (excerpt) (e) Data dependences
of a blur task

Data updated
by Roberts

Cross
Operator

Data updated
by Roberts

Cross
Operator

(f) Early update of the original
matrix

Figure 6.6: Blur-roberts: consecutive applications of two stencils

6.1.4 Bitonic

The bitonic benchmark implements a bitonic sorting network [16], capable of sorting an array
of 2N arbitrary 64-bit signed integer values. The sorting process is divided into N stages, each
performing a series of compare-and-exchange operations on the elements of the array. At each
stage, chunks of the array with a fixed size are sorted with a doubling chunk size from one stage to
another. That is, at the end of the kth stage, all chunks of size 2k+1 are sorted internally. Hence, the
first stage sorts pairs, the second stage all chunks of size four and so on, until the entire array is
sorted at the end of stage N − 1. An advantage of the bitonic sorting algorithm is that data can be
treated in fixed-size blocks by a sorting network of a fixed structure, keeping parallelism and the
amount of work per task constant on average.

Figure 6.7a shows a sorting network for arrays with eight elements divided into blocks of
two elements. During stage 0, each block is sorted internally by applying a compare-and-swap
operation to the pair that forms the block. This means that the element with a lower index in the
array is swapped with its neighbor if its value is greater. If this is not the case, both values remain at
their current positions. Let vkj be the element at position j of the array, resulting from stage k. The
values v0j of the array at the end of stage 0 are sorted, such that v02i ≤ v02i+1 for 0 ≤ i ≤ 2N−1−2. The
next stage sorts quadruples and yields v1j with v14i ≤ v14i+1 ≤ v14i+2 ≤ v14i+3 for 0 ≤ i ≤ 2N−2 − 4.
During the last stage, the entire array is sorted with v2i ≤ v2i+1 for 0 ≤ i < 2N − 1.

Figure 6.7b reveals that there are two types of operations, which can be seen best in stage 2.
The triangle-shaped operations merge two chunks by comparing the elements vc+i with vc+s−i−1,
where c is the base index of a chunk and s the size of a chunk (e.g., for s = 2 the base index of the
third chunk is c = 4). The second type of operation sorts a chunk internally by comparing and
swapping the elements of the upper and the lower half of the chunk for a successively refined
chunk size, indicated by the rectangles in Figure 6.7b. The compare-and-swap operations of both
types of operations can be grouped, such that a task that executes these operations takes either
one block as its input and produces exactly one block of output or such that it takes two blocks on
input and generates two output blocks. Figure 6.7c provides an example of such a grouping. Note
that this property is independent of the block size and the size of the array, as long as both are a
power of two.

109

Chapter 6: Experimental Setup

Stage 0 Stage 1 Stage 2

(a) Stages of the sorting process

Stage 0 Stage 1 Stage 2

Compare
halves

Merge
chunks

(b) Types of operations

Stage 0 Stage 1 Stage 2

(c)

Stage 0 Stage 1 Stage 2

(d) Dynamic task graph for four blocks

Figure 6.7: Bitonic: bitonic sorting network

If a task is associated to each group of operations in the grouping scheme above, this results in
a task graph given in Figure 6.7d for the example. The task graph also includes initialization tasks
i0 to i3 that copy data from shared memory to streams and t0 to t3, which write the result back
to shared memory. The tasks named h0j execute the operations necessary for the comparisons of
the halves of the blocks at stage 0. The first merging tasks, labeled m1

j , appear at the beginning
of stage 1 and provide data for the set of comparison tasks of the same stage, h1j . The value SB
indicates the number of elements per block. As each element is a 64-bit integer, the weight of each
dependence is thus 8SB .

The parallel control program follows the same pattern as the previous applications, in which
each task creates an indirect successor in the task graph. However, bitonic is less regularly structured
than the stencil computations and task creations can span the boundaries of two stages. Figure 6.8
shows an example of a larger sorting network with task creations.

The structure of the task graph of bitonic guarantees that the number of tasks ready for execution
always ranges between the number of blocks NB = 2N

SB
and the number of blocks divided by two

NB

2 = 2N−1

SB
throughout the execution of the program if progress is made from left to right and

if all tasks with the same distance to the initialization tasks are executed in parallel. Figure 6.9
illustrates this property on the task graph of the previous figure. If all tasks in a dashed rectangle
execute in parallel, parallelism never drops below 2N−1

SB
and is at most 2N

SB
. For each compare

halves operation of a given stage, a constant number of tasks can execute in parallel and although
the merge operations operate on data from multiple chunks, they do not act as global barriers
synchronizing all tasks before the operation. The upper bound of tasks that can execute in parallel
is reached at the beginning of the execution and at the end of each stage, while the lower bound
applies to all other intermediate steps. However, this property for parallelism is only valid if
progress in the task graph is made stage by stage and if the number of workers is greater than
or equal to NB

2 . For a lower number of workers, it is more likely that the overall progress spans

110

Chapter 6: Experimental Setup

Figure 6.8: Parallel control program of a bitonic sorting network

Available parallelism

Figure 6.9: Available parallelism during execution of a bitonic sorting network

(a) (b)

Figure 6.10: Bitonic: examples of progress within the task graph

111

Chapter 6: Experimental Setup

(a) Matrix multiply (b) Symm. rank k update (c) Cholesky Factorization (d) Equation solving

Figure 6.11: Cholesky: Block-wise updates of the matrix

multiple stages, such as in Figure 6.10a and Figure 6.10a, where tasks that have terminated are
marked with a striped pattern.

6.1.5 Cholesky

Cholesky is a linear algebra kernel that calculates the lower triangular matrix L of a dense,
symmetric, positive definite matrix A, such that A = L · LT . The N ×N -matrix A is divided into
SB · SB sub-matrices Ax,y , each of size SB × SB with Ax,y = (aij)x,y and x · SB ≤ i < (x+ 1) · SB ,
y·SB ≤ j < (y+1)·SB . To calculate the Cholesky Factorization ofA, it is necessary to apply different
operations to the sub-matrices and to propagate updated values accordingly. The principles are
illustrated in Figure 6.11, showing the updates of sub-matrices in the fifth column of a matrix
decomposed into 64 blocks. The order of the operations is the following:

1. Each block below the block on the diagonal is successively updated by calculating A′x,y =

−Ai,x ·ATi,y +Ax,y and setting Ax,y := A′x,y after each step for 0 ≤ i < x (cf. Figure 6.11a).
2. A symmetric rank k update is applied on the block on the diagonal, i.e., A′x,x = −A2

i,x +Ax,x
for 0 ≤ i < x and Ax,x := A′x,x after each update (cf. Figure 6.11b).

3. A Cholesky Factorization is performed on the diagonal block, such that A′x,x = Lx,x with
Ax,x = Lx,x · LTx,x. As specified for the previous operations, Ax,x is set to A′x,x afterwards (cf.
Figure 6.11c).

4. The result from the Cholesky Factorization is propagated vertically to all blocks below
the diagonal by solving: ATx,x · Xx,y = Ax,y and by setting Ax,y := Xx,y afterwards (cf.
Figure 6.11d).

Each of the operations is carried out by a highly optimized sequential function using the interface
from BLAS [20] and LAPACK [12], namely dgemm for the matrix multiplication, dsyrk for the
symmetric rank k update, dpotrf for the Cholesky Factorization and dtrsm for solving the
equation from step 4. The implementation of these interfaces is provided by Intel’s MATH KERNEL
LIBRARY (MKL [2]) with optimized code for high performance processors of the x86 family.

Due to its complexity, the task graph for Cholesky Factorization cannot be shown here. How-
ever, the dependences between the blocks as shown in Figure 6.11 give an idea of the structure of
the task graph. Each operation, dgemm, dsyrk, dpotrf and dtrsm on each block is carried out by
a separate task. Data dependences of the factorization algorithm require that the results produced
by a task might be communicated to multiple subsequent tasks. The exact number of readers
depends on the operation that the producer carries out, the number of blocks as well as on the
position of the associated block within the matrix. For example, the result of the dpotrf operation
on block (1, 1) in Figure 6.12a is read by six tasks calling dtrsm on the blocks below. As the number
of blocks below the diagonal decreases for blocks towards the left, the number of readers for the
same operation on block (4, 4) is only three as shown in Figure 6.12b. For the dtrsm operation
the number of readers is constant for all blocks in the same column, but the partitioning across
dgemm and dsyrk readers changes as shown in Figure 6.12c and 6.12d. However, the number of
readers of each version of a block is known at execution time as soon as the block size and the size

112

Chapter 6: Experimental Setup

(a) dpotrf to dtrsm, block
(1, 1)

(b) dpotrf to dtrsm, block
(4, 4)

(c) dtrsm to dgemm and
dsyrk, block (0, 4)

(d) dtrsm to dgemm and
dsyrk, block (0, 6)

Figure 6.12: Cholesky: varying number of readers depending on the operation and the block position

Task descriptions

Figure 6.13: Cholesky: parallel control program

of the matrix are determined. Hence, it is possible to use the broadcast mechanism involving peek
clauses and the tick construct introduced in Section 3.2.3 and 3.2.4. As almost all blocks need to be
communicated to multiple tasks our implementation makes heavy use of broadcasts.

Due to the complex dependences and due to the fact that ticks must take place after the creation
of all readers of a broadcast, it is difficult to develop a parallel control program that creates tasks
throughout the entire execution of the application. Therefore, we have implemented a less complex
control program that creates all tasks in parallel at the beginning of the execution. Figure 6.13
shows the principles of this control program 1. In a first step, the root task allocates an array with a
description including the operation and the coordinates of the block for each task to be created.
These descriptions are read by the leaf tasks of a tree of tasks whose root is formed by the root task
and where each leaf creates the set of tasks that correspond to the portion of the array assigned to
it. A barrier task b reads a single integer token from each of the leaf tasks and is thus activated
when all tasks for the Cholesky Factorization have been created. The root task synchronizes with
this barrier task using a taskwait construct to make sure that the tick operations that are necessary
to enable broadcasts all take place after the creation and matching of all readers.

Progress on the factorization is made starting with the upper left block of the matrix in vertical
and horizontal direction. The available parallelism at the beginning of the execution is low,
but increases until the maximum is reached towards the middle of the execution. Afterwards,
parallelism decreases until the block at the lower right is processed and execution finishes. Instead
of using auxiliary tasks for the transfer of data from shared memory to streams, the data is simply
copied by the first task accessing a block. In contrast to this, the transfer from streams back to
shared memory is done by dedicated tasks. The reason for this implementation scheme is that a
transfer at the end of the execution of a broadcasting task would delay its termination, which might

1. The number of 32 task descriptions in this example does not represent an actual value of an instance of cholesky
and only serves as an example for the illustration of the principles of the control program. Moreover, the actual data
dependences for the tasks implementing the factorization are not shown.

113

Chapter 6: Experimental Setup

result in delaying the start of a potentially high number of reading tasks. By adding a dedicated
task to the readers of the broadcast the transfer of the result to shared memory can be carried out
in parallel.

6.1.6 K-means

K-means is a data-mining benchmark that partitions a set of n d-dimensional points into k
clusters using a naive implementation of the K-means clustering algorithm. The algorithm starts
with a random selection of k points from the points to be clustered as the cluster centers and then
calculates for each point pi and each cluster center cq the euclidean distance δi,q :

δi,q =

√√√√ d∑
j=0

(vi,j − cq,j)2 with pi = (vi,0, . . . , vi,d−1) and cq = (cq,0, . . . , cq,d−1)

Afterwards, each point is associated to the cluster with the minimal distance 2. The cluster centers
for the next iteration are updated by calculating the barycenters of their associated points of the
current iteration:

c′q =
1

|Aq|
∑
pi∈Aq

pi where Aq = {pi|@δi,r : δi,r < δi,q ∧ r 6= q}

The algorithm stops when the number of points that changed their associated clusters falls
below a user-defined threshold. The principal data structures used by the implementation of
the clustering algorithm are a global array with the multi-dimensional points to be clustered, an
array with one point per cluster representing its current center and an array storing the cluster
membership of each point. While the array with the points is referenced only in read mode, both
the cluster center array and the membership array are updated at each iteration. The parallelization
is straightforward: the array containing the points to be clustered is divided into equal-sized blocks
of SB elements and during each iteration, each of these blocks can be processed in parallel. The
new barycenters are calculated by aggregating intermediate values of the sum successively in a
tree-like fashion.

The structure of the task graph for the clustering of an array with eight blocks is given in
Figure 6.14. For readability not all task creation relationships and not all data dependences and
weights are shown. The creation and execution of this graph can roughly be divided into four
phases.

During the first phase, the initial tasks as well as the tasks for the first and second iteration of
the algorithm are created by the tree-like structure on the left side formed by c0,0, c1,0, c1,1, c2,0, . . .,
c2,3. The leaves of this tree, i.e., c2,0 to c2,3, are responsible for the creation of the initial tasks i0 to
i7 reading data from shared memory and writing it to streams as well as for the tasks k00 to k07 of
the first iteration of the clustering algorithm and k10 to k17 of the second iteration. This ensures that
maximum parallelism is achieved quickly after the start of the application 3.

The second phase consists in the execution of i0 to i7, which read the blocks of multi-dimensional
point data, the current cluster centers and the membership information from shared memory and
write this data to streams.

In the third phase, the application performs as many iterations as needed until the number of
points whose assigned cluster changes falls below a threshold. Except the first and last iteration,
each iteration is characterized by three steps. The first step consists in propagating the updated
cluster centers by a tree-like subgraph formed by the tasks pij,o, where i stands for the iteration, j
for the depth of the propagating task below the root pi0,0 of the subgraph and o for the identifier of
the task at depth j. In the second step, each task kij calculates the distance of each point of block j

2. The actual implementation leaves out the calculation of the square root, since the squared euclidean distance δ2i,q is
sufficient to determine which of the cluster centers is nearest to a point.

3. The tree-like structure is implemented slightly differently in the actual implementation. However, the principle of
parallel task creation remains the same.

114

Chapter 6: Experimental Setup

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Parallel
Task Creation

Initialization Distance
calculation

Aggregation of data
from the first iteration

and termination detection

Propagation
of new cluster

centers

Distance
calculation

Aggregation of data
from the seond iteration

and termination detection

Propagation
of new cluster

centers

Termination

First
phase

Second
phase

Third
phase

Fourth
phase

First iteration Second iteration

Figure 6.14: K-means: clustering of multidimensional data

to the cluster centers and updates cluster membership accordingly. In the final step of an iteration,
the new cluster centers are calculated based on this membership. Furthermore, statistics about the
number of points that changed cluster membership are aggregated. This is done by the tasks rij,o,
where i designates the number of the iteration whose results are analyzed, j stands for the depth
of the task in the aggregating tree starting with the leaves and o corresponds to the number of the
task among all tasks at the same level of the aggregation. The last of the tasks in the tree finally
detects whether the algorithm has terminated (e.g., r12,0 in the figure).

The fourth and final phase consists in the termination of the algorithm. Due to the structure of
the control program, in which each task kij creates ki+2

j , and the fact that termination detection
takes places after termination of all tasks of an iteration, the application terminates two iterations
after the first iteration for which the number of points that changed membership is below the
threshold. Let q be the iteration at which termination is detected. The tasks kq+1

j of the following
iteration are not necessary, but cannot be canceled and the algorithm cannot terminate instantly. To
bypass this problem, each task kij receives a value from a propagating task that indicates whether
the algorithm is terminating or whether execution continues. In the first case, the task skips
all calculations and simply forwards all data to the terminal task tj . In the latter case, the task
performs a single iteration on the associated block. The application terminates when all terminal
tasks have finished execution. This can be detected by the root task by synchronizing using the
taskwait construct with a task b reading a token from all tasks tj .

The k-means benchmark also highlights an issue related to the implementation of broadcasts in
OpenStream. The data of the points to be clustered is only read and never written by any of the
tasks. Hence, a broadcast from the initial task reading a block from shared memory to all tasks
that read the block would be preferable (e.g., from i0 to k00 , k10 , . . ., kq0). However, as the number of
readers of a block depends on the number of iterations q, which is only known when termination
detection takes place, and as the number of readers of a broadcast must be known before it can
take place, it is impossible to use the broadcast mechanism of OpenStream to pass the point data
to all tasks kij . Thus, to be able to determine the working set of a task and its memory accesses in
the run-time all read-only data must be copied manually from one iteration to another. To this end,
each task kij performs a call to memcpy before termination, copying the entire block of points from
an input view to an output view of the same size.

115

Chapter 6: Experimental Setup

As a result of the aggregation mechanism which features a single task towards which all
dependence paths converge, progress in the task graph is made iteration by iteration. At each
iteration, parallelism increases exponentially from pi0,0 until all tasks kij have become ready for
execution. Afterwards, parallelism decreases exponentially until the last task of the reduction
executes. Note that the depth of the tree of reduction and propagation tasks in the examples
corresponds to the logarithm to the basis two of the number of blocks and that the amount of work
for these tasks is proportional to the number of cluster centers. Usually, the number of cluster
centers is several orders of magnitude lower than the number of points to be clustered, such that
the impact on execution time is small. However, due to the short execution time of reduction and
propagation tasks the relative overhead for task creation, synchronization and destruction can be
high. Therefore, the implementation of k-means allows the specification of an arbitrary number
f of aggregations at each step of a reduction or a propagation as long as the number of blocks is
a power of f . The amount of work of each task is proportional to the product of the number of
clusters and f . Thus, for a higher value for f both the relative overhead as well as the depth of
reduction and propagation trees decreases. However, at the same time parallelism between two
iterations decreases. During parametrization of the benchmark for a specific machine parallelism
and overhead must be traded off by adjusting f and the block size.

6.2 Baselines and measurement

The evaluation of the concepts presented in this thesis highlights different aspects related to
data locality and performance. For the comparison in our analyses we use two parallel baselines
as well as a sequential baseline. The first parallel baseline corresponds to the dynamic single
assignment version of the benchmarks presented in the previous section, executed by the NUMA-
aware implementation of the OpenStream run-time described in Chapter 4. This run-time uses
complete random work-stealing and does not include any of the optimizations for scheduling and
memory allocation presented in Chapters 7 and 8. The second parallel baseline consists in shared
memory implementations of the benchmarks that do not follow the principles of dynamic single
assignment and that use streams only for token-based synchronization. This baseline highlights
the benefits and drawbacks of using dynamic single assignment and allows for the comparison
with more conventional shared memory programming. The principles of this programming style
are given in the following section. Last, the sequential baseline consists of a set of sequential
implementations of the benchmarks not using any OpenStream-specific constructs and executing
without the OpenStream run-time system.

All implementations of the benchmarks use the same sequential optimizations, i.e. tiling of
matrices and arrays into blocks, manual loop unrolling etc., and all parallel baselines use identical
control programs. Furthermore, the data sets processed by the benchmarks implementing the
same algorithms are identical. In some cases, the shared memory and sequential implementation
differ sightly from the dynamic single assignment version. This is the case for in-place updates
of memory locations which require that older versions of elements which have not been read
by all dependent calculations are saved in a separate memory location. For example, the shared
memory versions of the jacobi benchmarks require the data at the borders of a tile to be saved for
the treatment of neighboring blocks before overwriting the current block.

With the exception of cholesky, all benchmarks have been implemented in three versions:
dynamic single assignment, token-based synchronization and as a sequential algorithm. Instead
of comparing the dynamic single assignment version of cholesky to a shared memory version
with token synchronization, we compare its performance to highly optimized, state-of-the-art
linear algebra codes. This comparison in provided in Chapter 9 dealing with the optimization of
broadcasts.

116

Chapter 6: Experimental Setup

Global data

Block 0 Block 1 Block 2

Current iteration

Previous iteration

(a) Division into blocks

Global data

Block 0 Block 1 Block 2

Current iteration

Previous iteration

Before the previous iteration

(b) Pipelining on blocks

Initialization

First iteration

Second iteration

Termination

...... ...

(c) Dynamic task graph

Figure 6.15: 1d stencil synchronizing with tokens

6.2.1 Synchronization using tokens

As an example of shared memory programming with OpenStream tasks, consider the 1-di-
mensional Seidel stencil introduced in Section 5.3. At each iteration, every element is updated by
calculating the average of the current value of the left neighbor, the value of the previous iteration
of the right neighbor and the value of the element itself (Figure 6.15a). Elements of different
iterations that are not direct neighbors can be processed in parallel. For example, the jth iteration
of the element at index i can take place at the same time as iteration j − 2 of the element at index
i+ 2.

The shared memory implementation of this application with token synchronization uses a
global array to store the data elements, implicitly partitioned into multiple blocks as shown in
Figure 6.15b. Tasks that operate on the same or neighboring blocks are synchronized through
streams. Similar to the dynamic single assignment version, a task for each block and each iteration
is created. The benchmark also creates initialization and termination tasks that are necessary to set
up and terminate synchronization, shown in Figure 6.15c. As in the dynamic single assignment
version, the dependences in the task graph reflect the data dependences of Figure 6.15a: horizontal
arrows represent dependences to the right neighbors, vertical arrows represent dependences to the
same sets of element from previous iterations and diagonal arrows indicate dependences to the left
neighbors. However, in contrast to the dynamic single assignment version, the weight associated
to each edge is the size of an integer element of four bytes rather than the actual size of the data
that corresponds to the dependence. As all data is stored in the global matrix, the dependences
between tasks are only control dependences that ensure the correct order of execution of the tasks.
The stream elements that correspond to these control dependences can be seen as tokens that are
passed from one task to another for task activation, hence the name token-based synchronization.
The following code listing shows the implementation of this token-based synchronization scheme.

Listing 6.1: One-dimensional stencil using tokens for synchronization

1 int main(int argc, char** argv)
2 {
3 int num_iters = 2;
4 size_t N = 1024*1024;
5 size_t B = 256*1024;
6 size_t num_blocks = N/B;
7 double* data = malloc(N*sizeof(double));
8

9 /* Streams with tokens for synchronization */
10 int tokens_center[(num_iters+2)*num_blocks] __attribute__((stream));
11 int tokens_left[(num_iters+2)*num_blocks] __attribute__((stream));
12 int tokens_right[(num_iters+2)*num_blocks] __attribute__((stream));
13

14 /* Indexes in the array of streams for input tokens */
15 #define LEFT_IN_IDX ((iter+1)*num_blocks+block-1)
16 #define RIGHT_IN_IDX (iter*num_blocks+block+1)
17 #define CENTER_IN_IDX (iter*num_blocks+block)
18

19 /* Indexes in the array of streams for output tokens */
20 #define LEFT_OUT_IDX ((iter+1)*num_blocks+block)

117

Chapter 6: Experimental Setup

21 #define RIGHT_OUT_IDX ((iter+1)*num_blocks+block)
22 #define CENTER_OUT_IDX ((iter+1)*num_blocks+block)
23

24 for(size_t i = 0; i < N; i++)
25 data[i] = random_double();
26

27 /* Token views */
28 int left_in_token, right_in_token, center_in_token;
29 int left_out_token, right_out_token, center_out_token;
30

31 /* Create tasks writing initial tokens */
32 for(size_t block = 0; block < num_blocks; block++) {
33 /* Leftmost block */
34 if(block == 0) {
35 #pragma omp task output(tokens_center[block] << right_out_token)
36 { }
37 }
38 /* Other blocks */
39 else {
40 #pragma omp task output(tokens_center[block] << right_out_token, \
41 tokens_left[block] << left_out_token)
42 { }
43 }
44 }
45

46 /* Create one task for each block and each iteration */
47 for(size_t iter = 0; iter < num_iters; iter++) {
48 for(size_t block = 0; block < num_blocks; block++) {
49 /* Leftmost block */
50 if(block == 0) {
51 #pragma omp task \
52 input(tokens_center[CENTER_IN_IDX] >> center_in_token, \
53 tokens_left[RIGHT_IN_IDX] >> right_in_token) \
54 output(tokens_right[RIGHT_OUT_IDX] << right_out_token, \
55 tokens_center[CENTER_OUT_IDX] << center_out_token)
56 {
57 process_block(data, block, num_blocks);
58 }
59 }
60 /* Rightmost block */
61 else if(block == num_blocks-1) {
62 #pragma omp task \
63 input(tokens_center[CENTER_IN_IDX] >> center_in_token, \
64 tokens_right[LEFT_IN_IDX] >> left_in_token) \
65 output(tokens_left[LEFT_OUT_IDX] << left_out_token, \
66 tokens_center[CENTER_OUT_IDX] << center_out_token)
67 {
68 process_block(data, block, num_blocks);
69 }
70 }
71 /* Block in the center */
72 else {
73 #pragma omp task \
74 input(tokens_center[CENTER_IN_IDX] >> center_in_token, \
75 tokens_right[LEFT_IN_IDX] >> left_in_token, \
76 tokens_left[RIGHT_IN_IDX] >> right_in_token) \
77 output(tokens_right[RIGHT_OUT_IDX] << right_out_token, \
78 tokens_left[LEFT_OUT_IDX] << left_out_token, \
79 tokens_center[CENTER_OUT_IDX] << center_out_token)
80 {
81 process_block(data, block, num_blocks);
82 }
83 }
84 }
85 }
86

87 /* Create tasks consuming output tokens of the final iteration */
88 for(size_t block = 0; block < num_blocks; block++) {
89 /* Leftmost block */
90 if(block == 0) {
91 #pragma omp task input(tokens_center[num_iters*num_blocks+block] >> center_in_token)
92 { }
93 }
94 /* Other blocks */
95 else {
96 #pragma omp task \
97 input(tokens_left[num_iters*num_blocks+block] >> left_in_token, \
98 tokens_center[num_iters*num_blocks+block] >> center_in_token)
99 { }

100 }

118

Chapter 6: Experimental Setup

101 }
102

103 #pragma omp taskwait
104

105 free(data);
106

107 return 0;
108 }

As tokens are represented by simple integers, all streams are typed as integer streams. Lines 10,
11 and 12 define arrays of streams with one stream for each dependence of a block, each block and
each iteration. The stream that a token is passed through for synchronization is determined using
the same macros as for the dynamic single assignment version of Section 5.3.4, defined in lines 15
to 22.

The shared array containing all data is allocated in line 7 with an ordinary call to malloc and
initialized in line 25. Input and output views on the synchronization tokens are declared in lines
28 and 29. The views only serve for proper declaration of the stream accesses of each task, but are
not accessed within a task.

The initial tasks, created by the loop starting at line 32, only generate tokens and do not perform
any useful computation. Therefore, their task bodies do not include any statement. The same
applies for the terminal tasks created in lines 88 to 101, which consume the tokens produced by the
tasks of the final iteration. The function process_block carries out the actual computation and
is called from the main tasks in lines 51 (leftmost block), 62 (rightmost block) and 73 (blocks not
at the border of the array). Note that the position of the block in the global array determines the
number of tokens the associated task needs in order to become activated: the block on the very left
only depends on the previous value of the block at the same position, while all the other blocks
also depend on the value of their left neighbors of the current iteration.

Before freeing the global array, it must be ensured that all tasks operating on its elements have
terminated. This is achieved by the taskwait construct in line 103 that blocks execution of the main
function until all tasks have completed.

As mentioned in the previous section, all shared memory implementations of benchmarks are
provided with a parallel control program that is identical to the dynamic single assignment version.
However, for simplicity, the listing above only contains a sequential control program.

6.2.2 Generic optimizations for load balancing across memory controllers

The sequential initialization of the matrix in Listing 6.2.1 causes all pages of the matrix to be
placed in the memory of the NUMA node of the worker executing the root task. Hence, during
execution of the benchmark, all memory accesses target the same memory controller, leading to
high contention resulting in high latency of memory accesses and low throughput. For benchmarks
with regular data structures, such as arrays and matrices, load balancing can be addressed simply
by distributing the pages of the data structures over multiple nodes. On Linux systems, LIBNUMA
provides support for interleaved allocation of data on a set of nodes that can be specified by the
application. By passing all of the system’s nodes as the list, it is thus possible to distribute data
over the entire machine. The interleaving is implemented at page granularity and allocates pages
in a round-robin fashion by cycling over the nodes from the list. Figure 6.16 shows this principle
for a an array allocated in an interleaved fashion on a system with n nodes in total.

In order to take advantage of this load balancing technique, we have provided all parallel
benchmarks with calls to a run-time function implementing interleaved allocation. This does
not only apply to the global data structures of the shared memory parallel baseline, but also to
the shared memory data structures for input and output data of the dynamic single assignment
versions.

After this description of the concepts and implementation of the benchmarks in the previous
sections, the next section focuses on measurement of indicators for performance and data locality.

119

Chapter 6: Experimental Setup

Pa
ge

Figure 6.16: Interleaved allocation on n nodes

6.2.3 Execution phases and measurement interval

Depending on the benchmark, not all of the executed instructions and micro-architectural
events are relevant for the experimental evaluation and it does not always make sense to measure
the time and all events that occur during the entire execution. For example, the initialization of the
input matrices of seidel, jacobi or blur-roberts is not part of the actual algorithm that the benchmark
implements and thus should not be taken into account for any evaluation. However, these steps
are essential for the execution of the benchmark and cannot be omitted.

Therefore, we have instrumented all benchmarks with calls to run-time functions that indicate
the beginning and the end of a relevant part of the execution. In the remainder of this thesis, we
refer to the interval between these function calls as the measurement interval. The execution time
and all data obtained using hardware performance counters refer exclusively to the measurement
interval and exclude all events related to initialization and de-allocation of resources. Activities
that are carried out by the run-time system outside the measurement interval are also excluded.

Figure 6.17 provides an overview of the activities that are included in and excluded from the
measurement interval, respectively. On startup of an OpenStream application, control is transferred
to the run-time system before any application-specific code is executed. The run-time starts by
initializing the data structures needed by the first worker, which will later execute the root task
of the application. Afterwards, memory pools are initialized, with one memory pool per NUMA
node as described in Section 4.4.2, including the allocation of large chunks of memory explained in
Section 4.5.1. Note that these chunks are only allocated logically, which results in fast initialization
of the memory pools.

Once all memory pools are initialized, the run-time creates the remaining workers w1 to wn−1,
where n corresponds to the number of cores. This is followed by the initialization of hardware
performance counters through appropriate calls to the PAPI [80] library 4. Depending on the type
of hardware counters provided in the configuration of the run-time system, e.g., per-core counters
or hardware counters that count micro-architectural events generated by multiple cores, all of the
workers or only a subset of workers are involved in this part of the initialization. After this step,
the run-time is set up and ready to start executing tasks. However, as no task has been created
so far, all workers except the first worker executing the root task remain idle. The root task is
created implicitly and starts with the main function of the application. Usually, all streams used
by the program are declared in the local scope of the main function at the beginning, such that the
first instructions of the application correspond to the creation of streams. Note that, although an
application can request the creation of large arrays with tens of thousands of streams, the duration
of this phase is usually negligible compared to the duration of the measurement interval.

The next step consists in the initialization of the benchmark, which includes the allocation of
global data structures as well as the generation of initial data. The beginning of the measurement
interval is marked by a call to gettimeofday that captures the current time followed by a call to
openstream_start_hardware_counters, which starts counting micro-architectural events.
All the activities of the benchmark itself as well as all activities of the run-time that occur within the
measurement interval are included in the statistics. For the benchmarks studied in this thesis, this
involves the creation of all tasks, the execution of all tasks including auxiliary tasks transferring
data between global data structures and streams as well as the termination of the algorithm using
a data-flow barrier. The end of the measurement interval is marked by a call to openstream_

4. The use of hardware performance counters can be entirely disabled in the configuration of the run-time, e.g., if only
the execution time is measured.

120

Chapter 6: Experimental Setup

Worker activity c Task creation Task steal
Time

...

Initialization
of memory

pools

Creation of
remaining
workers

Initialization
of the first

worker

Initialization
of global

data structures

De-allocation
of global

data structures

c

Initialization
of streams

c c
...

c

c

c

c

c

c

c

c

cc

c

cc

c

c

c
...

...

...

...

...

Measurement interval

Initialization of the run-timeInitialization of the run-time Root task: Initialization of the benchmark

D
at

a-
fl

ow
 b

ar
ri

er

Worker creation

Idle

Idle

Idle

Idle

...
Initialization
of hardware
performance

counters

Figure 6.17: Phases during execution of a benchmark

pause_hardware_counters and a second call to gettimeofday. The wall clock execution
time is calculated by subtracting the timestamps obtained through the two calls to gettimeofday
and is written to standard output afterwards. Values for hardware performance counters are also
written to the standard output, but are calculated by the run-time aggregating values obtained for
all cores.

6.3 Hardware environment
For the experimental evaluation of our concepts we used two many-core systems: an AMD

Opteron platform and an SGI system with Intel Xeon processors. In this section, we provide an
overview of the memory hierarchy of these systems and determine the ratio of the latency of
accesses to remote memory over the latency of accesses to local memory.

6.3.1 Opteron test platform

The first test system is a quad-socket AMD Opteron 6282 SE running at a clock frequency of
2.6GHz. Figure 6.18a shows a hierarchical view of its basic components. At the coarsest level, the
machine is composed of 4 physical packages called multi-chip modules. Each module contains two
dies, each of which finally contains 8 cores organized as pairs of cores sharing some resources.

At the core pair level, the floating point unit, the instruction fetcher and decoder, the first-level
instruction cache as well as the 2MiB of second level cache are shared. The third level cache of
6MiB and the memory controller are shared by all of the cores located on the same die. Among
the private, per-core resources are the integer unit and the 16KiB first level data cache.

As implied by the sharing of memory controllers, main memory is divided into 8 equal-sized
NUMA domains of 8GiB so that the total amount of main memory available is 64GiB. Their
distances as reported by the NUMACTL tool [58] is visualized in Figure 6.18b. For each node there
are four neighbors at a distance of one hop and three neighbors at a distance of two hops.

The machine runs Scientific Linux 6.2 with kernel 3.10.1.

6.3.2 SGI test platform

The second system we have used is an SGI UV2000 with a total of 192 cores and 756GiB RAM
distributed over 24 NUMA nodes. The system is organized in blades, each of which contains
two Intel Xeon E5-4640 CPUs running at 2.4GHz. Each CPU has 8 cores and has direct access
to a memory controller. The cache hierarchy consists of three levels with separate, core-private
instruction and data cache at the first level, each with a capacity of 32KiB, a core-private unified
L2 cache of 256KiB at the second level and a unified third level cache of 20MiB, shared among
all cores of the CPU. Each core supports two hardware threads through Intel’s Hyperthreading
technology, such that the system appears to have 384 processing units in total. For our experiments,

121

Chapter 6: Experimental Setup

Multi-Chip
Module

Multi-Chip
Module

Multi-Chip
Module

Multi-Chip
Module

Die

Die

Memory Controller

L2 Cache

Core
N+1

L1 DCache L1 DCacheL1 ICache

Instruction
fetch and
decode

FPUCore
N+0

L2 Cache

Core
N+3

L1 DCache L1 DCacheL1 ICache

Instruction
fetch and
decode

FPUCore
N+2

L3 Cache

L2 Cache

Core
N+7

L1 DCache L1 DCacheL1 ICache

Instruction
fetch and
decode

FPUCore
N+6

(a) Organization of the memory hierarchy

2

0

1

3

6

4

5

7

(b) Links

Figure 6.18: Architecture of the Opteron test system

CPU CPU

Blade

Memory Controller

L1 Data

Core
N+1

L2 Cache

L1 Inst.L1 Data

Core
N+0

L2 Cache

L1 Inst. L1 Data

Core
N+3

L2 Cache

L1 Inst.L1 Data

Core
N+2

L2 Cache

L1 Inst.

L3 Cache

L1 Data

Core
N+7

L2 Cache

L1 Inst.L1 Data

Core
N+6

L2 Cache

L1 Inst.

Blade

...

Figure 6.19: Architecture of the SGI test system

however, Hyperthreading has been disabled for a unique mapping of logical processor identifiers
to physical cores.

Each blade has a direct connection to a set of other blades and an indirect connections to the
remaining ones. From a core’s perspective, a memory controller can be either local if associated
to the same CPU, at 1 hop if on the same blade, at 2 hops if on a different blade that is connected
directly to the core’s blade or at 3 hops if on a remote blade with an indirect connection.

The system runs SUSE Linux Enterprise Server 11 SP3 with kernel 3.0.101-0.46-default.

6.3.3 Latency of memory accesses and NUMA factors

To measure the latency of memory accesses as a function of the distance in hops between the
requesting core and the memory controller that satisfied the request, we have implemented a
synthetic benchmark that allocates a buffer on a single node using LIBNUMA, initializes it and
measures the execution time for a sequence of memory accesses to the buffer from a core of a
specific node. Each sequence traverses the whole buffer from beginning to end in steps of 64B,
such each cache line of the buffer is only accessed once. The buffer size was set to 1GiB to make
sure that data is evicted from the cache before it is reused and thus to measure only memory
accesses that are satisfied by the memory controller and not by the hierarchy of caches.

The results are summarized in table 6.1 and 6.2. On both systems, the latency of memory
accesses increases with the distance between the requesting core and the targeted memory con-
troller. In addition, for each distance, write accesses are significantly slower than read accesses.
The rightmost column of each table indicates how many times accesses are slower compared to
accesses to a node’s local memory. For read accesses on the Opteron system, these values range
from 1.81 for on-chip accesses to a memory controller at a distance of one hop to a factor of 4.34 for
off-chip accesses at a distance of two hops. For write accesses these values are lower, ranging only
from 1.2 to 2.48 due to the higher initial latency of local write accesses. Not surprisingly the factors
for both read and write accesses are significantly higher on the larger SGI system. The highest
factor of 7.48 corresponds to read accesses at a distance of three hops.

122

Chapter 6: Experimental Setup

Read accesses Write accesses Factor R/W
Local 1288.50± 1.22ms 2256.94± 14.06ms 1.00 / 1.00
1 hop (on-chip) 2328.38± 0.49ms 2717.62± 12.16ms 1.81 / 1.20
1 hop (off-chip) 2781.36± 0.56ms 3934.62± 0.56ms 2.16 / 1.74
2 hops 5601.58± 0.57ms 5601.34± 0.55ms 4.34 / 2.48

Table 6.1: Average latency of read and write accesses as a function of the distance for the Opteron
system

Read accesses Write accesses Factor R/W
Local 934.82± 5.74ms 1307.40± 2.95ms 1.00 / 1.00
1 hop 4563.10± 3.02ms 5282.38± 1.56ms 4.88 / 4.04
2 hops 5820.48± 2.11ms 6473.38± 1.16ms 6.23 / 4.95
3 hops 6991.24± 2.71ms 7673.14± 0.92ms 7.48 / 5.87

Table 6.2: Average latency of read and write accesses as a function of the distance for the SGI
system

In conclusion, we expect that the optimization of the locality of accesses to main memory has a
higher impact on the SGI system and that applications react more sensitively to the optimization
of write accesses than to the optimization of read accesses.

6.4 Parametrization and tuning of the benchmarks
In this section, we describe which parameters we have chosen for the benchmarks presented in

Section 6.1 and how these parameters have been determined. The second part of the section deals
with the sequential optimization of the applications and presents the flags used for compilation as
well as manual optimizations of the code.

6.4.1 Parametrization

The parameters for the benchmarks have been chosen carefully with respect to the architectures
above. Four criteria were particularly relevant to the parametrization:

– The input size defining whether the entire data set can be held in caches or if accesses to
main memory are necessary. The maximal reasonable size should prevent the system from
swapping out contents of the main memory to the hard disk.

– The available parallelism depending on the input size and the granularity of tasks defined
by the block size.

– The cache hit rate for sequential execution within a task constrained by the block size.
– The wall clock execution time mainly constrained by the size of the data set and the number

of iterations for stencil computations.

Some of these criteria are dependent, e.g., the block size both influences the cache hit rate
as well as the available parallelism during execution. The methodology we have used for the
parameterization is the following. First, we defined the size of the data set. As this thesis focuses
on the optimization of accesses to main memory, we have chosen an initial size for the data set for
each benchmark that exceeds the overall cache capacity of both test platforms by several orders
of magnitude. Next, we defined a number of iterations for the stencil computations, except for
blur-roberts that always performs only a single iteration. To avoid that the execution of auxiliary
tasks represents a significant fraction of the execution time, we set the number of iterations to 60,
such that the number of main computation tasks is at least one order of magnitude higher than the
number of auxiliary tasks. In the third step, we defined several block sizes and chose the size that
yielded minimal execution time among them when executed using the OpenStream run-time with
random work-stealing, i.e., without any of the optimizations proposed in Chapter 7 or Chapter 8.
Finally, we analyzed the parallelism with our performance analysis tool Aftermath, presented in

123

Chapter 6: Experimental Setup

Matrix / Vector size Block size Iterations
Seidel 214 × 214 28 × 28 60
Jacobi-1d 228 216 60
Jacobi-2d 214 × 214 28 × 28 60
Jacobi-3d 210 × 29 × 29 26 × 26 × 26 60
Blur-roberts 215 × 215 (Opteron) / 216 × 216 (SGI) 28 × 28 -
Bitonic 228 216 -
Cholesky Up to 215 × 215∗ 28 × 28 -

Points Block size Dimensions Clusters Fan-out
K-means 40, 960, 000 10, 000 10 11 2
∗ Different matrix sizes are evaluated, see Chapter 9

Table 6.3: Parameters for the benchmarks

Chapter 10. If workers were idling during a significant fraction of the measurement interval, we
increased the size of the data set until parallelism was sufficiently high.

Table 6.3 summarizes all parameters for the benchmarks. These apply to the dynamic single
assignment implementations, the shared memory baseline as well as the sequential baseline. For
seidel, jacobi-1d, jacobi-2d, jacobi-3d and bitonic the data set has a size of 2GiB (228 double precision
floating point elements or 64-bit integers, respectively). For blur-roberts, we have chosen matrices
with a size of 8GiB for the Opteron system and 16GiB for the SGI platform. The main reason for
the difference between the size for the Opteron platform and the size for the SGI system is that
the 215 × 215 matrix is processed very fast on the SGI system, resulting in a wall clock execution
time of far less than one second. Therefore, we have increased the size to 216 × 216 elements on the
SGI system. However, we could not use this size on the Opteron platform as the parallel baseline
without optimizations for scheduling and data placement starts swapping out contents of the main
memory to the hard disk. For cholesky we have evaluated different sizes of the symmetric matrix
with up to 8GiB. The k-means benchmark is executed with 40, 960, 000 points with 10 double
precision floating point dimensions, which corresponds to a data set of 3.125GiB.

The block size yielding the minimal execution time for the majority of the benchmarks is 512KiB.
The only exceptions are jacobi-3d, for which a block size of 2MiB performs best and k-means with a
block size of 800kB. The number of clusters and the number of dimensions for k-means have been
set arbitrarily to 11 and 10, respectively. A value of two for the fan-out of propagations (equal to
the fan-in for reductions) provided sufficiently short reduction and propagation phases.

All input data structures are initialized at the beginning of the execution, triggering physical
allocation of the memory for the input data. The seidel benchmark sets all elements of the matrix
to zero, except two elements near the upper left corner and the lower right corner, which are
initialized with a value different from zero. As the latter values do not have any significant
impact on the execution time we have chosen an arbitrary value of 500. The same procedure for
initialization applies to jacobi-2d. In the one-dimensional version of the benchmark we initialize all
elements to zero except two values at the beginning and the end of the array are, which are set
to 500. Similarly, jacobi-3d initializes only an element in the upper left corner towards the front
and one in the lower right corner towards the rear to 500. The blur-roberts application sets all
elements to values obtained by calculating the sum of their coordinates within the matrix, i.e.
vx,y = x+ y. For the initialization of the input vector of the bitonic sorting network, we chose to
generate random integers using a linear congruential generator.

The initialization of the input matrix for cholesky is slightly more complicated. The matrix is
first initialized by the dlarnv function of the LAPACK interface, generating a random double
precision floating point value between between 0 and 1 for each element of the matrix. To make sure
that the matrix is positive definite as required for Cholesky Factorization, a diagonally dominant
matrix is derived from the random matrix by adding N to the elements on the diagonal, where N
is the number of elements in a row.

124

Chapter 6: Experimental Setup

Relevant compiler flags Manual optimizations
Bitonic -O2 -
Cholesky -O2 -ffast-math Calls to an optimized library (MKL)
Jacobi-1d -O3 -ffast-math -
Jacobi-2d -O3 -ffast-math -
Jacobi-3d -O3 -ffast-math -
K-means -O3 -
Blur-roberts -O3 -ffast-math -
Seidel -O3 -ffast-math 16× loop unrolling of the innermost loop

Table 6.4: Compiler flags and manual optimizations for the benchmarks

The points for the k-means benchmark are generated through random walks around 11 randomly
chosen cluster centers. Similar to bitonic, all random data is generated using a linear congruential
generator.

6.4.2 Compiler flags and manual optimizations

All benchmarks have were compiled using the OpenStream compiler based on GCC 4.7.0 [79].
Table 6.4 summarizes the relevant compiler flags and the manual optimizations applied to the
source code used on both hardware platforms. The majority of the benchmarks was compiled
using aggressive optimizations enabled by the -O3 flag and using faster floating point operations
enabled by -ffast-math. In addition, we have unrolled 16 iterations of the innermost loop of
the loop nest for the main computation in seidel. The cholesky benchmark is compiled using the
less aggressive -O2 switch. However, as described in Section 6.1.5, we have configured cholesky to
use the highly optimized MATH KERNEL LIBRARY for all BLAS and LAPACK functions, such
that the compiler flags above only have little influence on the performance of the benchmark. The
bitonic benchmark has also been compiled using the -O2 flag as the use of -O3 did not improve
performance.

6.5 Characterization of memory accesses
To understand the impact of data locality on performance in the experimental evaluation of the

following chapters, it is important to understand the behavior of the benchmarks with respect to
the memory hierarchy. In this section, we provide an overview of the cache miss rates and analyze
the frequency of memory accesses of the parallel baseline using dynamic single assignment on
both test systems presented above. To characterize the behavior for the execution with maximal
parallelism, the number of workers used in the experiments is equal to the number of cores of
the systems. The goal of this section is to classify the applications according to the frequency
of memory accesses into a set of memory-bound applications that are sensitive to the latency
of memory accesses and thus sensitive to data and task placement and a set of cache-bound
applications for which placement does not have a significant impact on performance.

Figure 6.20 shows the cache miss rates for the three cache levels of the memory hierarchy of the
Opteron and the SGI platform for the execution of the different benchmarks, except cholesky. The
reason why we do not provide an analysis of cholesky is that this benchmark relies on optimizations
for broadcasts that are introduced in Chapter 9. Without these optimizations, the memory footprint
is excessively high, such that a presentation of the cache miss rate would not provide insight on
inherent characteristics of the benchmark. The frequency of last level cache misses for cholesky will
be presented in Section 9.4.2. The cache miss rate is defined as the number of cache misses divided
by the number of accesses to the cache. Due to the lack of an appropriate counter for the number
of accesses to the first level cache on the SGI system, we use the number of load instructions as
an approximation for the number of accesses. As this counter does not capture all accesses to the
first level cache, it represents an over-estimation of the actual number of accesses. At the first

125

Chapter 6: Experimental Setup

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic
0

10

20

30

40

50

60

70

80

Ca
ch

e
m

is
s

ra
te

 [%
]

0.6

33.1

73.5

0.3

14.3

53.7

0.4

11.4

55.9

1.2

8.5

58.1

0.3

8.5

33.5

1.0

20.9

69.4

1.6

32.3

38.8

L1
L2
L3

(a) Opteron platform

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic
0

20

40

60

80

100

Ca
ch

e
m

is
s

ra
te

 [%
]

3.5

38.3

84.8

8.4

50.0

84.4

4.3

39.9

86.5

3.8

18.3

55.1

0.9

15.6

68.7

4.1

44.9

91.3

12.7

21.1

54.1

L1
L2
L3

(b) SGI platform

Figure 6.20: Cache miss rates of the dynamic single assignment versions

level of the cache hierarchy both machines have separate data and an instruction caches. As we
focus on data accesses, we have collected statistics on the first level cache for the data cache only 5.
Each bar of the graph represents the median for 50 executions and error bars indicate the standard
deviation.

On the Opteron system, the fraction of accesses to the first level cache generating a miss is
below 2% for all of the benchmarks. The miss rates of the second level cache on this platform are
significantly higher and range from 8.5% for jacobi-3d and k-means to more than 30% for bitonic and
seidel. The third level cache has the highest cache miss rates with at least 33.5% for k-means to up to
73.5% for seidel.

Execution on the SGI system yields higher cache miss rates in general due to the fact that
remote memory accesses have a significantly higher latency, resulting in less cache lines that are
brought to the cache in time by the hardware prefetching mechanism. The approximated first-level
cache miss rates range from 0.9% for k-means to as much as 12.7% for bitonic. The minimal miss
rate for the second level cache is also achieved by k-means and reaches its maximum again for
jacobi-1d. The last level cache miss rates on this system are all higher than 50% and reach more
than 80% for four of the benchmarks, namely seidel, jacobi-1d, jacobi-2d and blur-roberts.

Although the miss rates of the second level and third level caches are high, the total number
of accesses missing all levels remains reasonable due to the low miss rates of the first level cache.
However, cache miss rates help characterize the benchmarks with respect to the cache hierarchy
and indicate the fraction of cache accesses resulting in misses, but do not provide information on

5. The actual PAPI hardware counter names used for data collection are PAPI_L1_DCM, PAPI_L1_DCA, PAPI_L2_DCM,
PAPI_L2_DCA for the per-core counters of the first and second level as well as the per-northbridge counters
L3_CACHE_MISSES:ALL and READ_REQUEST_TO_L3_CACHE:ALL on the Opteron system and PAPI_L1_DCM,
PAPI_LD_INS, PAPI_L2_DCM, PAPI_L2_DCA, PAPI_L3_TCM and PAPI_L3_TCA on the SGI platform.

126

Chapter 6: Experimental Setup

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic
0.0

0.5

1.0

1.5

2.0

2.5

L3
 m

is
se

s
pe

r K
in

st
ru

ct
io

n

2.39

1.20

0.81 0.72

0.17

2.53

1.74

(a) Opteron platform

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic
0

2

4

6

8

L3
 m

is
se

s
pe

r K
in

st
ru

ct
io

n

6.58

5.47

2.75

1.05
0.22

8.13

3.42

(b) SGI platform

Figure 6.21: Number of last level cache misses per thousand instructions

how often accesses to main memory occur. As we focus on memory accesses to main memory in
this thesis, we analyze their frequency below.

An access to main memory occurs when the data requested by the access is present in either
of the system’s cache. Hence, the number of accesses to main memory is equal to the number of
last-level cache misses. We define the frequency of last level cache misses as the number of last level
cache misses per thousand instructions. Figure 6.21 shows the frequency of last level cache misses
for each benchmark except cholesky, executing on the two test systems. Each bar in Figure 6.21
represents the median number of last level cache misses of the respective benchmark divided by
the median number of instructions for the same benchmark for 50 executions 6. Without exception,
all of the frequencies of the SGI system are higher than those of the Opteron system. This is due to
the higher cache miss rates on the SGI system, which result in frequent accesses to the last level
cache and hence a higher absolute number of misses.

A comparison of the frequencies of all benchmarks reveals that the characteristics are approx-
imately the same on both platforms. Among all benchmarks, blur-roberts generates the highest
number of last level cache misses per thousand instructions, followed by seidel. The ranking of
bitonic and jacobi-1d differs between the systems: while bitonic has a higher frequency of last level
cache misses than jacobi-1d on the Opteron platform, jacobi-1d generates more misses per instruction
than bitonic on the SGI system. Furthermore, jacobi-2d and jacobi-3d yield approximately the same
values on the Opteron system, while the frequencies of these benchmarks differ significantly on
the SGI system. However, on both platforms k-means has by far the lowest frequency of last level
cache misses among all benchmarks.

Hence, we expect k-means to be the benchmark with the least sensitivity to data and task place-
ment and seidel, blur-roberts and bitonic to be among the benchmarks with the highest sensitivity.
For the benchmarks in between the categorization is less clear.

6.6 Scalability of NUMA-agnostic shared memory benchmarks
To support our choice in Section 6.2.2 to use interleaved allocation for global data structures

in shared memory, we analyze the scalability of the shared memory baseline with and without

6. The PAPI counter measuring the number of executed instructions on both platforms is PAPI_TOT_INS.

127

Chapter 6: Experimental Setup

interleaving. Figure 6.22 shows the speedup over the sequential baseline of the benchmarks on
the Opteron system for an increasing number of workers used for execution 7. Due to the long
execution time for a low number of workers, each data point represents the median of only 10
executions. As for the previous graphs, error bars indicate the standard deviation. The workers in
the experiments have been assigned to cores in increasing order of logical processor identifiers,
resulting in placements where all cores of a NUMA node are used before workers are placed
on neighboring nodes. For example, a configuration with eight workers uses the cores with the
identifiers 0 to 7, which all belong to the first NUMA node. To maximize the available bandwidth,
interleaved allocation always involves all NUMA nodes independently from the number of cores.

The graphs for the Opteron system show that the maximum speedup over sequential execution
without interleaving is reached when using six or seven workers for most of the benchmarks.
For a higher number of workers, the performance either remains approximately the same (seidel,
jacobi-2d, jacobi-2d, blur-roberts, bitonic) or performance drops (jacobi-1d). The k-means benchmark is
the only application that scales beyond seven workers and achieves higher performance with each
additional core. However, neither benchmark performs better with the default data placement
scheme than with interleaved allocation for more than 24 cores. Using interleaved allocation
scaling is near linear, although the slope of the curves is below a preferable slope of one.

The results for the SGI system shown in Figure 6.22 are similar. With interleaved allocation,
each additional core increases performance, except for blur-roberts whose performance drops for
more than 128 cores. Though, the performance increase by each core becomes lower for a high
number of cores for most of the benchmarks. An interesting observation is that for all benchmarks
except k-means the default allocation scheme performs better than interleaved allocation for up
to eight cores. This is due to the placement of workers, which associates the first eight workers
to cores of the same node. With the default allocation scheme, all memory accesses are local,
while most of the accesses are remote using interleaved allocation. However, as soon as the
number of workers exceeds the number of cores per node, reduced contention compensates
the reduced locality of interleaved allocation, resulting in higher performance compared to the
default method for memory allocation. Another interesting result is that the performance of
blur-roberts using interleaved allocation decreases when using more than 112 cores. Similarly, the
performance of seidel drops for 160 cores, but reaches the maximum for 192 cores. In the case of
blur-roberts, we suspect that the high number of requests to main memory creates contention on all
memory controllers. An explanation for the performance drop of seidel for 160 cores seems more
complicated. However, a detailed analysis of this behavior is out of the scope of this analysis. As
the majority of benchmarks provides the highest performance when using all cores of the machine,
the experiments for the evaluation use 64 and 192 cores, respectively.

The conclusion of the results above is that interleaved allocation significantly improves the
scalability of the shared memory baseline and should therefore be used by default. This confirms
our choice to use interleaved allocation for data structures in shared memory in our experiments.

6.7 Summary
In this chapter, we provided an overview of the applications and the hardware environment

used for the evaluation of the concepts presented in this thesis and introduced the methodology
used for measuring the execution time as well as the quantification of micro-architectural events
based on hardware performance counters. The set of applications consists of eight high perfor-
mance scientific benchmarks covering stencil computations (seidel, jacobi-1d, jacobi-2d, jacobi-3d,
blur-roberts), integer sorting (bitonic), clustering (k-means) and linear algebra kernels (cholesky). All
of the benchmarks except cholesky have been implemented as a sequential application, as a parallel
application using dynamic single assignment and as a parallel application using shared memory
programming with token synchronization. The cholesky benchmark has only been implemented
using dynamic single assignment and will be compared to state-of-the-art parallel linear algebra

7. As cholesky has not been implemented using shared memory and token synchronization the graphs do not include
results for this benchmark.

128

Chapter 6: Experimental Setup

0 10 20 30 40 50 60 70
Number of workers

0

2

4

6

8

10

12

14

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

Default
Interleaved

(a) Seidel

0 10 20 30 40 50 60 70
Number of workers

0

2

4

6

8

10

12

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

Default
Interleaved

(b) Jacobi-1d

0 10 20 30 40 50 60 70
Number of workers

0

2

4

6

8

10

12

14

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

Default
Interleaved

(c) Jacobi-2d

0 10 20 30 40 50 60 70
Number of workers

0

2

4

6

8

10

12

14

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

Default
Interleaved

(d) Jacobi-3d

0 10 20 30 40 50 60 70
Number of workers

0

2

4

6

8

10

12

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

Default
Interleaved

(e) Blur-Roberts

0 10 20 30 40 50 60 70
Number of workers

0

5

10

15

20

25

30

35

40

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

Default
Interleaved

(f) Bitonic

0 10 20 30 40 50 60 70
Number of workers

0

5

10

15

20

25

30

35

40

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

Default
Interleaved

(g) K-means

Figure 6.22: Scalability of shared memory benchmarks (Opteron platform with 64 cores)

129

Chapter 6: Experimental Setup

0 50 100 150 200
Number of workers

0

5

10

15

20

25

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

Default
Interleaved

(a) Seidel

0 50 100 150 200
Number of workers

0

2

4

6

8

10

12

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

Default
Interleaved

(b) Jacobi-1d

0 50 100 150 200
Number of workers

0

5

10

15

20

25

30

35

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

Default
Interleaved

(c) Jacobi-2d

0 50 100 150 200
Number of workers

0

5

10

15

20

25

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

Default
Interleaved

(d) Jacobi-3d

0 50 100 150 200
Number of workers

0

5

10

15

20

25

30

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

Default
Interleaved

(e) Blur-Roberts

0 50 100 150 200
Number of workers

0

10

20

30

40

50

60

70

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

Default
Interleaved

(f) Bitonic

0 50 100 150 200
Number of workers

0

20

40

60

80

100

120

140

160

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l

Default
Interleaved

(g) K-means

Figure 6.23: Scalability of shared memory benchmarks (SGI platform with 192 cores)

130

Chapter 6: Experimental Setup

codes in Chapter 9. For the dynamic single assignment versions, we provided details on the
partitioning of work into tasks and the parallel control program as well as on the use of streams.
Wherever possible, we kept the same partitioning, the same data structures and the same con-
trol programs for the shared memory baseline. A basic characterization of the behavior of the
benchmarks with respect to the memory hierarchy showed that some benchmarks are likely to be
more sensitive to remote memory accesses than others. Finally, we confirmed our choice to use
interleaved allocation for all data structures in shared memory by analyzing the results for the
scalability of the applications of the shared memory baseline.

The next two chapters introducing data-aware scheduling and deferred allocation build on the
information of this chapter as they both refer to the applications and the hardware environment
described above and make use of the measurement methodology.

131

Chapter 6: Experimental Setup

132

7 Data-aware scheduling

In the previous chapters, we laid the foundations of data-aware scheduling by providing
accurate and efficient methods to determine the placement of data and by constraining the structure
of streaming applications, such that the working set of the majority of tasks is known before their
execution. In this chapter, we show how this information can be used to improve the locality
of accesses to main memory with respect to NUMA. We first analyze the effects of the default
scheme for task activation on data locality and identify possible causes for accesses to remote
memory. Based on these observations, we introduce work-pushing, a data-aware and topology-
aware mechanism for task transfers between workers that is triggered at task activation. The goal
of this technique is to avoid a mismatch of task ownership and the ownership of data and thus
to favor execution of tasks on the nodes containing their data. We then analyze the influence of
random work-stealing on data locality with matching task and data ownership and introduce
topology-aware work-stealing, which attempts to steal tasks in a worker’s, incrementally widening,
neighborhood based on an abstract, static description of the memory hierarchy. We show that
work-pushing and topology-aware work-stealing are complementary techniques that improve the
locality of accesses to main memory significantly compared to the default task activation scheme
and random work-stealing. For memory-bound applications, the increase of data locality results in
a significant improvement of performance. Parts of this chapter were previously published in [46].

7.1 The influence of task activation on data locality
A task is activated when all of its producers have terminated and all of its consumers have

been created. To illustrate the different scenarios for data locality resulting from task activation,
we use the most general case for task dependences presented in Figure 7.1, showing a task t that
depends on n producers p0 to pn−1 and that provides input data for m consumers c0 to cm−1. The
amount of data read from each producer is indicated by δ0i to δn−1i while δ0o to δm−1o refer to the
amounts of output data of t written to the consumers. The task that creates t is labeled tc and tasks
t0c,o to tm−1c,o are the creators of the consumers of t. The figure also indicates for each task by which
worker it is executed: the producers are executed by w0

i to wn−1i , t is executed by wt, tc is executed
by wc and the creators of the consumers are executed by w0

c,o to wm−1c,o . Note that the identifiers for
the workers are only used as a shorthand to refer to the workers executing the task and different
identifiers do not necessarily imply different workers. Throughout the entire chapter, we assume
that the memory allocation techniques presented in Chapter 4 are used and that the size of each
input buffer exceeds the threshold defined in Section 4.4.1, such that the placement of each buffer

Chapter 7: Data-aware scheduling

... ...

Figure 7.1: A task with n producers and m consumers

is determined by the run-time system. All applications are assumed to implement dynamic single
assignment on streams.

As stated in Section 3.4.1, the execution model of OpenStream defines that a task which becomes
ready for execution is added to the single entry software cache of the worker that satisfies its
last dependence. This is the worker that executed the producer which finished last among all
producers of the task and which decremented the task’s synchronization counter to zero. Unless
the newly activated task is transferred to the worker’s work-deque due to the activation of another
task by the same worker and unless it is stolen by another worker, the task will also be executed by
the worker that satisfied its last dependence. We say that a worker owns a task if the task is either
in the worker’s single entry software cache or in the worker’s work-deque. For the task graph of
the example, this means that the worker that owns t and which is likely to execute t afterwards is
defined by the order of termination of p0 to pn−1. Depending on the timing at execution this could
be any of the workers w0

i to wn−1i .

7.1.1 The locality of read accesses

All of the input buffers of a task are allocated at task creation and originate from the memory
pool of the creating worker. Due to the use of per-node memory pools presented in Section 4.4.2,
buffers allocated from the same memory pool are generally placed on the same node, which
corresponds to the node associated to the memory pool. Hence, the input buffers of a task are all
placed on the node of the creating worker. In the example, all of the input buffers of t are thus
placed on the node associated to wc. Whether access to these buffers during execution of t targets
local or remote memory depends on the core on which wt executes. If the core is associated to the
same node as wc, the accesses to input data of t all target local memory, as shown in Figure 7.2a. If
wt is a worker that executes on a CPU that is associated to a different node than the node of wc, the
accesses target a remote node, as shown in Figure 7.2b. However, this last configuration becomes
more likely for a higher number of nodes and thus a higher number of workers if we assume
that the probability for the execution of a producer task is equal for all workers. The default task
activation scheme does neither have control over the timing of the execution of the producers
nor does it define the set of workers w0

i to wn−1i . Thus, local accesses are the result of favorable
circumstances at execution time.

7.1.2 The locality of write accesses

The placement of the buffers receiving the output data of t can be more complex than the
placement of input buffers. As the consumers are potentially created by different workers operating
on different nodes, the input buffers of the consumers, which serve as the output buffers for t,
can also be placed on different nodes. Hence, not only the worker executing t, but also the
distribution of output buffers define whether write accesses during execution of t target local or
remote memory. For a distribution of output buffers on more than one node a part of the write
accesses of t inevitably targets a remote node, independently from the worker that executes t.

134

Chapter 7: Data-aware scheduling

CPU CPU CPU CPU

RAM

Node jNode i

RAM

CPU CPU CPU CPU

...

Interconnect

......

(a) Local read accesses

Interconnect

...

Node i

RAM

CPU CPU CPU CPU

...

CPU CPU CPU CPU

RAM

Node j

...

(b) Remote read accesses

Figure 7.2: Remote / local memory accesses to input buffers depending on activating worker

CPU CPU CPU CPU

RAM

Node N-1

CPU CPU CPU CPU

RAM

Node j

CPU CPU CPU CPU

RAM

Node iNode 0

RAM

CPU CPU CPU CPU

Interconnect

...... ...

(a) Remote accesses to multiple nodes, equal-sized buffers

CPU CPU CPU CPU

RAM

Node N-1

CPU CPU CPU CPU

RAM

Node j

CPU CPU CPU CPU

RAM

Node iNode 0

RAM

CPU CPU CPU CPU

Interconnect

.........

(b) Imbalance between nodes due to buffers placed on the same node

CPU CPU CPU CPU

RAM

Node N-1

CPU CPU CPU CPU

RAM

Node j

CPU CPU CPU CPU

RAM

Node iNode 0

RAM

CPU CPU CPU CPU

Interconnect

...

(c) Imbalance between nodes due to a varying buffer size

CPU CPU CPU CPU

RAM

Node N-1

CPU CPU CPU CPU

RAM

Node j

CPU CPU CPU CPU

RAM

Node iNode 0

RAM

CPU CPU CPU CPU

Interconnect

.........

(d) Local accesses only

Figure 7.3: Remote / local write accesses depending on the placement of output buffers

135

Chapter 7: Data-aware scheduling

(a) Execution of u0
and l0

(b) Execution of l1 (c) Execution of u1 (d) Execution of t

Figure 7.4: Different probabilities among workers for task ownership

(a) Remote read accesses (b) Local read accesses

Figure 7.5: Influence of task creation on the locality of read accesses

Figure 7.3 illustrates different cases for the locality of write accesses resulting from the placement
of the input buffers of c0 to cm−1. In Figure 7.3a, only one of the consumers’ input buffers is placed
on the node of the worker executing t and the large majority of write accesses targets remote
memory independently from the node on which t is executed. For example, if t were executed on
Node 0, access to the input buffer of c0 would be local, but accesses to the input buffer of c1 would
be turned from local into remote accesses. Figure 7.3b and Figure 7.3c show different situations in
which output buffers are also distributed over multiple nodes, but in which some of the nodes
contain more output data than others. The imbalance of the distribution in Figure 7.3b results from
the placement of multiple output buffers on the same node, while the imbalance in Figure 7.3c is
due to the varying size of output buffers. Hence, some nodes are more favorable for execution than
other as they contain a larger fraction of the memory regions for output. However to maximize
data locality, ideally all output buffers of t are placed on a single node and t is executed on a core
of the same node as in Figure 7.3d. This requires that all of the workers w0

c,o to wm−1c,o as well as wt
are workers operating on cores of the same node. For higher numbers of nodes and workers this
becomes less likely if the probability of execution of a task is equal for each worker.

As already mentioned above for input buffers, the default task activation scheme neither takes
into account data placement nor does it control data placement actively. As a result, the fraction of
local accesses to main memory heavily depends on the application and on parameters determined
at execution time.

7.1.3 The influence of the task graph on task ownership

In the discussion above we assumed that the probability of a task to be executed by a worker
is equal for each worker. However, in practice, the probability of task ownership often varies
between the workers that execute the task’s producers, as the order of execution of the producer
tasks can be influenced by the structure of the task graph. Consider the task graphs shown in
Figure 7.4a with five tasks u0, u1, l0, l1 and t. Assume that u0 and l0 are executed in parallel by
two different workers wu and wl and have the same duration. At the end of their execution l1
becomes ready and wl becomes the owner of l1 as shown in Figure 7.4b. The consumer of u0 also
depends on data from l1 and therefore cannot become ready immediately at termination of u0.
At termination of l1 the only worker that can become the owner of u1 is wl (Figure 7.4c). Thus,
although t depends on two tasks it can only be activated by wl (Figure 7.4d) and the probability of
task ownership for wu is zero.

Depending on the relationships of task creation and the initial distribution of tasks to workers,

136

Chapter 7: Data-aware scheduling

the probabilities for task ownership resulting from the structure of the task graph can lead to
remote or local memory accesses. For example, if wu and wl operate on different nodes and if the
task creation in the task graph of the previous example is carried out as in Figure 7.5a, where u0
creates t, read accesses during execution of t are guaranteed to target remote memory. In contrast
to this, read accesses are guaranteed to be local if l0 creates t as shown in Figure 7.5b. This would
also be the case if wu and wl operated on the same node.

The implications of the structure of the task graph on task ownership and locality can be
complex for sufficiently large task graphs. In addition, they depend on the initial distribution of
tasks to workers as well as on the architecture of the system executing the application. Hence,
it is generally impossible to control the locality of memory accesses through modification of the
structure of a parallel application in this execution model.

7.1.4 Conclusion

The default method for task activation causes the worker that satisfies the last dependence
of a task to become its owner, independently from the placement of input and output buffers of
the newly activated task. This often leads to a mismatch between the ownership of tasks and
the ownership of data, resulting in accesses to remote memory during execution of tasks. For
data locality, ideally task and data ownership match and each task is executed on the node that
contains its data or, if its data is distributed over multiple nodes, on the node with the minimal
average distance to the data. In the following section, we introduce work-pushing, a task activation
mechanism that improves data locality by transferring a task to a worker of an appropriate node.

7.2 Work-pushing
Improving the fraction of memory accesses targeting local memory is an important step to

reduce the average latency of memory accesses and thus to increase performance. From this
perspective, it is crucial to reduce the mismatch of task and data ownership explained in the
previous section. To this end, we propose work-pushing, which transfers a task that becomes ready
for execution to an appropriate worker based on information about the working set of the task
derived from dynamic single assignment as well as information on the placement of this data. The
selection of the target worker for such a transfer is essential for the locality of accesses to memory
during task execution. Based on the observations of the previous section, we propose three simple
heuristics for this selection:

– The first heuristic, which we refer to as input only, avoids a mismatch between task ownership
and the ownership of input data by pushing a task to a worker operating on the node that
contains the task’s input buffers.

– The output only heuristic tries to avoid a mismatch between task ownership and the owner-
ship of output buffers. However, as there can be several nodes containing the output buffers
of a task, it might be necessary to choose between multiple nodes. To take into account these
situations, the heuristic estimates the access time for each node and each output buffer and
chooses a worker from the node with the smallest overall access time.

– Finally, we also evaluate a heuristic named weighted, which acts similarly to the output only
heuristic, but which also includes input buffers when determining the most appropriate
worker to reduce the time spent on memory accesses.

Efficient lock-free work-stealing deques, as the one used for work-stealing in OpenStream [37],
cannot be used to remotely push tasks without changing the algorithm and incurring high synchro-
nization costs. As a solution to this problem, the run-time can employ an additional work-sharing
mechanism that uses a data structure dedicated to task transfers, such as a multi producer, single
consumer FIFO queue (MPSC FIFO). In this solution, each worker is provided with an MPSC FIFO

137

Chapter 7: Data-aware scheduling

cache deque MPSC
FIFO

cache deque MPSC
FIFO

cache deque MPSC
FIFO

cache deque MPSC
FIFO

...

CPU 0

Persistent
worker

CPU 1

Persistent
worker

CPU 2

Persistent
worker

CPU N-1

Persistent
worker

Figure 7.6: Updated structure of the workers with MPSC FIFO

whose only purpose is to receive tasks from remote workers and which does not interfere with
the single entry software cache or the work-deque. Figure 7.6 shows the updated set of structures
associated to each worker. When a task needs to be transferred from the activating worker to the
target worker, it is simply added to the target worker’s MPSC FIFO. The target worker checks after
each execution of a task if new tasks have been added to the MPSC FIFO and transfers them to its
single entry software cache and its work-deque.

Algorithm 3 shows how a worker w discovering that a task t is ready for execution transfers
the task to another worker if necessary. This procedure called last_dep_satisfied is composed of four
parts explained below.

In the first part from lines 3 to 42, the actual placement of input and output buffers of the task is
determined and weighted according to the heuristic. Input views are only taken into account if the
selected heuristic is either the input only heuristic or the weighted heuristic. For each of the input
views the procedure first determines the node that contains the associated input buffer by calling
node_of with the data pointer of the view in line 10. This function looks up the placement from
the metadata cache of the input buffer introduced in Section 4.4.1. If the placement is known, the
input buffer is taken into account and its size is added to the element of an array called data, which
stores the amount of data for each node (line 15). The size of the view is also added to data_size in
line 18, even if the placement could not be determined. This variable stores the overall size of the
task’s data relevant to the heuristic and is used to estimate whether a transfer to a remote worker
is likely to be beneficial or not. Output views are taken into account if the selected heuristic is the
output only or weighted heuristic. The statements of lines 25 to 42 are similar to the statements for
input views with the exception that the weighted heuristic uses a weight of two when counting the
amount of output data on a node. The reason for this choice is that write accesses to main memory
are usually more critical for performance than read accesses as shown in Section 6.3.3. In case of
an equal number of bytes of input and output data on different nodes, the weighted heuristic thus
prioritizes the node for the output data.

In the second part in lines 43 to 47, the procedure estimates whether a transfer of the task to a
remote worker is beneficial or not and, if this is the case, determines to which node the task should
be transferred. To this end, the variable data_size is compared with an empirically determined
threshold of 10kB of relevant data 1. The purpose of this check is to avoid that tasks with a small
working set are transferred to remote workers, incurring an overhead for the transfer of the task
without improvements on performance due to improved locality of data accesses. If the value of
data_size is below the threshold, the task is added to the single entry software cache of the worker
by calling add_task_locally (presented in Algorithm 2 of Section 17) and the procedure returns
immediately.

1. For the benchmarks studied in this thesis the threshold of 10kB is superior to the size of the working set of tasks that
only access small buffers whose placement does not have an impact on performance. Whether this value is appropriate in
general is to be determined with a broader range of applications.

138

Chapter 7: Data-aware scheduling

Algorithm 3: last_dep_satisfied(w, t)

1 nodew ← local_node_of_worker(w)
2 data[0 . . . N − 1]← 〈0, . . . , 0〉
3 data_size← 0
4

5 if heuristic = input only or
6 heuristic = weighted
7 then
8 for v ∈ t.input_views
9 do

10 nd ← node_of (v.data)
11 s← v.horizon
12

13 if nd 6= unknown
14 then
15 data[nd]← data[nd] + s
16 end
17

18 data_size← data_size + s

19 end
20 end
21

22 if heuristic = output only or
23 heuristic = weighted
24 then
25 for v ∈ t.output_views
26 do
27 nd ← node_of (v.data)
28 s← v.horizon
29

30 if nd 6= unknown
31 then
32 if heuristic = weighted
33 then
34 s← 2 · s
35 end
36

37 data[nd]← data[nd] + s

38 end
39

40 data_size← data_size + s

41 end
42 end

43 if data_size < 10kB
44 then
45 add_task_locally(t, w)
46 return
47 end
48

49 nodemin ← node_with_min_cost(nodew, data)
50

51 if nodemin 6= nodew
52 then
53 wdst ← random_worker_on_node(nodemin)
54 res← push_back(wdst.mpsc_fifo, t)
55

56 if res = failure
57 then
58 add_task_locally(t, w)
59 end
60 else
61 add_task_locally(t, w)
62 end

139

Chapter 7: Data-aware scheduling

Algorithm 4: node_with_min_cost(nodew, data)

1 costs[0 . . . N − 1]← 〈0, . . . , 0〉
2

3 for src ∈ {0, . . . , N − 1}
4 do
5 for dst ∈ {0, . . . , N − 1}
6 do
7 costs[n]← costs[n]+
8 data[dst] · cost(src, dst)
9 end

10 end
11

12 costmin ← costs[nodew]
13 nodemin ← nodew
14 othermin ← 〈0, . . . , 0〉
15 num_othermin ← 0
16

17 for n ∈ {0, . . . , N − 1}
18 do
19 if costs[n] = costmin
20 then
21 othermin[num_othermin]← n
22 num_othermin ← num_othermin + 1

23 end
24

25 if costs[n] < costmin
26 then
27 costmin ← costs[n]
28 nodemin ← n
29 num_othermin ← 0

30 end
31 end
32

33 if nodemin 6= nodew and num_othermin 6= 0
34 then
35 othermin[num_othermin]← nmin
36 num_othermin ← num_othermin + 1
37

38 r ← rand(num_othermin − 1)
39 nodemin ← othermin[r]

40 end
41

42 return nodemin

Algorithm 5: scheduler_loop(w)

1 while true do
2 t← w.cached_task
3 if t = null then
4 t← pop_bottom(w.deque)
5 end
6

7 if t = null then
8 t← steal_task()
9 end

10

11 if t 6= null then
12 execute_task(t)
13 end
14

15 empty_mpsc_fifo(w)
16 end

Algorithm 6: empty_mpsc_fifo(w)

1 import← true
2 while import = true do
3 t← pop_front(w.mpsc_fifo)
4

5 if t 6= null then
6 add_task_locally(t, w)
7 else
8 import← false
9 end

10 end
11

12

13

14

15

16

140

Chapter 7: Data-aware scheduling

If the check is passed, execution reaches the third part of the procedure, which consists in a call
to node_with_min_cost with the array holding the per-node values for the data size in line 49. The
details of this function are given in Algorithm 4. The return value of the call, which represents the
node with the minimal overall access time to the data, is assigned to nodemin.

In the last part, the procedure checks if a transfer to a remote node using the task transfer
mechanism involving the MPSC FIFO is needed. This is the case if nodemin is different from the
node of the worker that activated the task (Line 51). As there are generally multiple workers per
node, the procedure must first select a worker from the target node. This is done in line 53 by
choosing the worker randomly among the workers of the node based on a uniform distribution.
Once the target worker is known, the actual transfer is triggered in line 54. If this transfer fails, e.g.,
due to a full MPSC FIFO of the target worker, the worker activating the task becomes the owner
and the procedure returns (line 58). The same happens if the target node is the local node of the
activating worker, as this does not require the use of the MPSC FIFO and can be carried out using
the worker’s own single entry software cache and work-deque.

The algorithm that returns the node with the lowest estimated overall access time, node_with_
min_cost, is presented in Algorithm 4. Its arguments are the identifier nodew of the node associated
to the calling worker and the array data with an entry for each node, specifying how much data
is located on that node. The function starts with the calculation of an estimation for the access
cost for each node in lines 3 to 10. The base for this calculation is the array data and a function
called cost, which indicates the cost of a data transfer between two nodes. In our experiments,
this architecture-specific function is modeled according to the distance matrix reported by the
NUMACTL tool, which indicates for each pair of nodes the distance and thus an approximation of
latency of data transfers the between the nodes. After having calculated the access costs, the node
with the minimal cost is selected. The variables scoremin and nodemin are initialized with the score
and the identifier of the local node, respectively. This ensures that the local node is selected by
default if is has the minimal score and there are other nodes with the same score. The array othermin
stores the nodes that have the same score as the current minimum and num_othermin indicates
how many of these nodes exist. Their values are updated throughout the execution of the loop
in lines 17 to 31. Afterwards, the node with the minimal cost is elected among the nodes from
othermin, by selecting one of them randomly using a uniform distribution (lines 33 to 40). Choosing
this node randomly ensures that the node identifier does not have an influence on the election
and avoids favoring specific nodes. For example, if othermin were traversed sequentially to find the
minimal value, nodes with lower identifiers would be more likely to be elected.

Tasks pushed to a remote worker by last_dep_satisfied are stored in the MPSC FIFO of the target
worker and are thus ineligible by the scheduler as they are neither in the software cache nor in the
work-deque. Hence, in order to be executed eventually, they need to be transferred to the software
cache and the work-deque. Algorithm 6 illustrates how this simple transfer is done: while the
MPSC FIFO is not empty, the front element is removed and added to the work-deque. Using this
order has an important side effect. The front of the MPSC FIFO contains the oldest tasks while the
back holds the most recent tasks. Thus, during the last iteration of the loop, the most recent task is
added to the software cache and becomes the next task to be executed by the worker. Input data of
the most recent task has the highest probability to be still present in caches near to the executing
core in the memory hierarchy. The last task from the MPSC FIFO is therefore a good candidate
for execution. As pushes to a worker can occur at any time, the MPSC FIFO needs to be emptied
regularly. This behavior is achieved by adding a call to empty_mpsc_fifo to the scheduler loop of
each worker, e.g., such as in Algorithm 5, where the function is called each time before the worker
selects a new task for execution.

7.3 Topology-aware work-stealing
Work-pushing is triggered when a task becomes ready and transfers the task to an appropriate

worker. Work-stealing acts as a complementary technique, which provides workers that run out

141

Chapter 7: Data-aware scheduling

of work with tasks ready for execution and hence ensures global computational load balancing.
The default random work-stealing strategy neither takes into account the working set of tasks nor
the topology of the machine. The property of matching task ownership and data placement from
work-pushing could be exploited by the work-stealing algorithm to steal a task whose data is near
the node of the stealing worker.

From a core’s perspective, the nodes of the machine are reachable at different distances, e.g., at
one hop, two hops and so on. Hence, depending on the topology of the machine, the distinction
between local and remote nodes can be too coarse when stealing a task. For example, if two
workers executing on two different nodes both have tasks available and the first worker is at a
distance of a single hop and the other at a distance of two hops, the worker whose node is at a
lower distance should be favored for a steal as data transfers from this node and to this node have
a lower latency. Similarly, within a node, it might be beneficial to prioritize steals from neighboring
workers sharing the same cache as the stealing worker. As data of the task to be stolen may already
be present in the shared cache, data accesses during its execution may be faster.

Defining the inter-node and intra-node priorities requires knowledge of the topology of the
machine. Before we discuss the topology-aware work-stealing algorithm, we present a lightweight
static model for the representation of the memory hierarchy, which is used by the work-stealing
algorithm in order to adapt to the topology of the target machine. This model can either be
provided by the system administrator or the manufacturer or it could be generated automatically
using a tool such as HWLOC [30]. The description can be broken down to the following parts:

– A set C ⊂ N0 of identifiers for processing units, e.g. C = {0, . . . , 63}.
– An ordered set L containing the levels of the memory hierarchy from the cache nearest to the

CPUs down to the different NUMA domains or memory controllers, e.g. L = 〈L1, L2, L3,
RAM〉.

– A function sibs : L× C → N describing how many processing units share an instance of a
hardware part at a given level. We refer to these processing units as siblings. For example,
if four cores with identifiers 8, 9, 10 and 11 share a third level cache then sibs(L3, 8) =
sibs(L3, 9) = sibs(L3, 10) = sibs(L3, 11) = 4. Passing a processing unit as a parameter to sibs
allows the definition of asymmetric architectures. For example, in the architecture of the SGI
test system presented in Section 6.3.2 the number of siblings at a distance of two hops varies
between the cores of the different nodes.

– A function nth_sib : L × C × N → C describing which processing unit is the nth sibling
of another processing unit in ascending order of CPU identifiers at a given level, e.g. if
processing units 0 to 7 share a third level cache, nth_sib(L3, 0, 2) = 2 and nth_sib(L3, 3, 2) = 5.

By using L, sibs, nth_sib and the order relation on L the neighbors of a core at the different levels of
the memory hierarchy can be determined easily for topology-aware work-stealing.

The idea behind our optimized heuristic for work-stealing is that instead of randomly selecting
a steal victim, task deques of neighboring workers are favored, which leads to more local memory
accesses when the stolen task is executed. However, the work-deques of close workers might not
always provide enough tasks to steal. To avoid poor load balancing, other attempts at higher levels
in the memory hierarchy must be performed if work-stealing fails on close deques.

Our topology-aware work-stealing technique is shown in Algorithm 7. At each level l beginning
with the level nearest to the CPU, a number of steal attempts defined by attempts(l) is performed
until an attempt is successful or no level is left. In addition to the definitions of the memory
hierarchy, the algorithm uses the following notations and functions:

– rand(n) generates a random integer value in [0;n] using a uniform distribution
– cpu : W → C returns the processing unit a worker executes on with W being the set of

workers
– attempts : L → N0 defines the maximal number of steal attempts at a given level of the

memory hierarchy
– steal_task : W → T∞ ∪ {null} is a function that performs a steal attempt on a target deque

and returns the stolen task from the set of tasks T if the attempt is successful or null if the

142

Chapter 7: Data-aware scheduling

Algorithm 7: topology_aware_stealing(w)

1 cpuw ← cpu(w)
2

3 for level ∈ L do
4 num_siblings← sibs(l, cpuw)
5

6 for attempt← 1 to attempts(l) do
7 n← rand(num_siblings− 1)
8 target_cpu← nth_sib(l, cpuw, n)
9

10 if target_cpu 6= cpuw then
11 target_worker ← cpu−1(target_cpu)
12 t← steal(target_worker)
13

14 if t 6= null then
15 return t
16 end
17 end
18 end
19 end
20 return null

attempt fails

7.4 Experimental results
To evaluate the effectiveness of work-pushing and topology-aware work-stealing, we have

implemented these techniques in the OpenStream runtime and measured the impact on the locality
of data accesses as well as the impact on performance. As topology-aware work-stealing relies
on work-pushing, it can only be evaluated together with work-pushing. To differentiate between
the configurations, we use the following acronyms: rnd for plain random scheduling without
work-pushing and without topology-aware work-stealing, input only for work-pushing with the
input only heuristic, output only for work-pushing with the output only heuristic and weighted for
work-pushing with the weighted heuristic. Combinations of work-pushing and topology-aware
work-stealing are indicated by the name of the push heuristic followed by a plus sign and taws, i.e.,
input only+taws, output only+taws or weighted+taws.

7.4.1 Metrics for evaluation

We define multiple metrics to evaluate the locality of data accesses, as well as the performance
of the applications for the different configurations. All of them are based on data collected by the
run-time during execution of the benchmarks. The main data sources are statistics about data
placement obtained from the operating system as described in Section 4.4.1 and samples from
hardware performance counters.

Measuring data locality in terms of NUMA

A simple way to measure data locality in terms of NUMA is to configure a set of hardware
performance counters for the appropriate events and to count the number of events during the
interval of interest. On the Opteron platform, we have configured counters for two northbridge

143

Chapter 7: Data-aware scheduling

events, indicating requests to local memory 2 and requests to the memory of a remote node 3,
respectively. The northbridge is shared between sets of 8 cores forming a node, such that the events
only have to be configured once for each node. Let N i

loc be the number of requests to the local
memory controller and let N i

rem be the number of requests to remote memory issued by the cores
of node i. We define the locality of requests to main memory Rloc as the ratio between the number of
local requests to the total number of requests for the set of NUMA nodes N as:

Rloc =

∑
i∈N N

i
loc∑

i∈N N
i
loc +

∑
i∈N N

i
rem

=

∑
i∈N N

i
loc∑

i∈N
(
N i

loc +N i
rem
)

Due to missing support for the appropriate counters in the kernel version used on the SGI system,
we can provide the results for this metric only for the Opteron test system. However, it is possible
to approximate Rloc based on information about the working set of tasks and page placement
available in the OpenStream run-time. Let core_node : C → N be a function that associates
each core with the identifier of the core’s NUMA node and let node_of : A → N be the function
used earlier for work-pushing that returns the identifier of the node containing the data of the
input buffer whose address is specified as the parameter. The function is_local :W ×A→ {0, 1},
indicating whether the access to an address from a worker is local, can then be defined as:

is_local(w, a) =

{
1 if core_node(cpu(w)) = node_of(a)
0 otherwise

In the following definition we assume that each input buffer is entirely placed on a single
node. This implies that for each address of the buffer node_of yields the same value. With a
function worker_of : T∞ →W , which defines by which worker a task was executed, Rloc can be
approximated as follows:

Rloc ≈ R
appr
loc =

Aloc

Atot
with Aloc =

∑
t∈T∞

∑
(as,ae)
∈

WSC(t)

(ae − as + 1) · is_local(worker_of(t), as)

and Atot =
∑
t∈T∞

∑
(as,ae)
∈

WSC(t)

(ae − as + 1)

In this definition, Aloc is an approximation for the number of bytes accessed locally and Atot is an
approximation for the overall number of bytes accessed throughout execution of all tasks. The
resulting approximation for Rloc is less precise than using hardware performance counters, since it
entirely neglects the cache hierarchy. For example, if a worker executes a task whose input data
is present in the local cache, the accesses to the input buffers would be counted by Atot, although
the transfer takes place between the core and the cache and not between the core and the memory
controller. However, assuming a constant average last level cache miss rate rLLC

m , the definition of
the approximation of Rloc does not change:

R
appr
loc =

rLLC
m ·Aloc

rLLC
m ·Atot

=
Aloc

Atot

Last, this metric does not take into account tasks for which the working set cannot be determined
or for which the placement of input or output buffers cannot be determined. In particular, these
are auxiliary tasks with memory accesses that do not target stream elements and tasks that write to
buffers that have not been used before and whose placement thus cannot be determined by the
run-time before the access. However, auxiliary tasks only represent a small fraction of all tasks and
the occurrence of tasks writing for the first time to a buffer after a refill becomes less likely over
time. The accuracy of the approximation is briefly discussed in Section 7.4.2.

2. CPU_IO_REQUESTS_TO_MEMORY_IO:LOCAL_CPU_TO_LOCAL_MEM
3. CPU_IO_REQUESTS_TO_MEMORY_IO:LOCAL_CPU_TO_REMOTE_MEM

144

Chapter 7: Data-aware scheduling

Figure 7.7: Visual representation of data and task placement

Measuring performance

The performance is expressed as the speedup over the default OpenStream run-time with
random work-stealing and without work-pushing and as the speedup over the parallel baseline
of shared memory implementations. The former speedup, srnd, is defined as the wall clock
execution time twct,rnd of the default configuration divided by wall clock execution time twct of the
configuration for which the speedup is calculated:

srnd =
twct,rnd

twct

Similarly the latter speedup sshm is defined as the wall clock execution time of the shared memory
baseline twct,shm divided by twct:

sshm =
twct,shm

twct

Graphical representation of data locality

The explanation of some of the results in the following section requires an analysis of the
influence of the task graph on the work-pushing heuristics. For a compact visual representation
combining the task graph, the placement of input data and the node on which a task executes,
each task hereinafter may be represented by two colored and patterned semi-circles. The color
and pattern of the right semi-circle indicate on which node the task’s input data is placed, while
the color and pattern of the left semi-circle show to which node the executing core belongs (cf.
Figure 7.7). A question mark on the left circle indicates that the worker that will execute the task is
still to be determined as can be the case for a task that has not been created, a task that is not ready
for execution or a task whose dependences have all been satisfied, but which is not executing, yet.
A question mark on the right side indicates that the placement of the input buffers is still unknown.
This applies to tasks that have not been created and to input buffers that have not been allocated
physically. In the examples, we use up to four different NUMA nodes na, nb, nc and nd, identified
by the following colors and patterns:

– Red / small triangles: node na
– Green / small rectangles: node nb
– Blue / horizontal stripes: node nc
– Yellow / crosshatch: node nd

7.4.2 Results for work-pushing

We start the experimental evaluation with a comparison of the different heuristics for work-
pushing with default random work-stealing. We first investigate the influence on data locality and
then evaluate the impact on performance. Unless mentioned otherwise, each bar in the graphs
below represents the mean value for a total of 50 executions. Error bars indicate standard deviation.
Due to a huge memory footprint resulting from the default mechanism for broadcasts the cholesky
benchmark is not evaluated in this chapter.

Locality of accesses to main memory

Figure 7.8 shows the locality of requests to main memory Rloc on the Opteron platform for
the three work-pushing heuristics and the set of benchmarks using dynamic single assignment.
The graph shows that all of the three heuristics improve the fraction of accesses to local memory
significantly. When using the input only heuristic, approximately half of the requests to memory
target local memory for most of the benchmarks. The highest value of 80.6% is achieved for k-means

145

Chapter 7: Data-aware scheduling

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic

20

40

60

80

100

Fr
ac

tio
n

of
 re

qu
es

ts
 to

 lo
ca

l m
em

or
y

[%
]

17.6

54.0

80.9 81.9

49.8
53.1

80.7 81.6

39.9

56.2

85.8 87.3

34.7

51.4

76.3 77.2

24.3

80.6

91.0 92.8

23.8

36.6

29.5

36.6

44.8

54.2 52.5

64.2

random
input only
output only
weighted

Figure 7.8: Locality of requests to main memory on the Opteron system for the push heuristics

(a) Initial placement

(b) Placement of the input only heuristic after the
execution of t0

(c) Final placement using the input only heuristic

(d) Placement of the output only / weighted
heuristic after the execution of t0

(e) Final placement using the output only / weighted
heuristic

Figure 7.9: Influence of the push heuristic on seidel and jacobi

and the lowest value of 36.6% is the result for blur-roberts. For seidel, jacobi-1d, jacobi-2d, jacobi-3d
and k-means the output only heuristic and the weighted heuristic yield approximately the same
locality and perform significantly better than the input only heuristic with values of about 80% and
more than 90% for k-means. For the bitonic benchmark input only and output only provide the same
data locality of more than 50%, while the weighted heuristic increases locality to more than 60%.
The locality of blur-roberts is similar for input only and weighted (more than 30%) and a bit lower for
the output only heuristic (less than 30%).

The reason for the improvement of locality by the output only and weighted heuristic is a
synergistic effect of the structure of the task graph, the control program and the push heuristic.
One of the main characteristics of the benchmarks for which the output only and weighted heuristic
yield a higher value for data locality is the presence of highly unbalanced dependences and
long paths with heavy dependences, such as in the task graph shown in Figure 7.9. Although
this task graph represents only a simplified subset of the actual task graphs and shows only a
subset of the light dependences, the behavior of the work-pushing heuristics at execution time is
similar. Figure 7.9a shows a possible initial placement of the first two tasks on the path of heavy
dependences indicates by the thick arrows. The input buffers of t0 are placed on the node na,

146

Chapter 7: Data-aware scheduling

(a) Task graph

Input buffers
used for the
first time

Tasks not yet
created

(b) Beginning of the execution

Freed input
buffers with
information
on placement

Tasks reusing
the input buffers
of the tasks above

(c) After termination of the first tasks

Figure 7.10: Timing of the determination of data placement in blur-roberts

while the input buffers of t1 are placed on nb. The input only heuristic pushes each task to the
node that contains the tasks input buffers. As the input buffers of new tasks are allocated on
the same node as the worker executing the creating tasks, the transfer of the creating task also
conditions the placement of the task following the consumer of the creating task. For example,
when t0 becomes ready, it is pushed to a worker on na, which causes the input buffers of t2 to be
allocated on na, as shown in Figure 7.9b. The next task on the path, t1 is pushed to a worker on
nb, which causes the input buffers of t3 to be allocated on nb. The resulting placement, shown in
Figure 7.9c, is an alternation of nodes na and nb. Due to work-pushing, read accesses are local,
but write accesses are always remote. The output only and the weighted heuristic indirectly break
these alternations, as a task is pushed to the worker containing a task’s output buffers, which
corresponds to a transfer to the node containing the input buffers of the following task on the path.
Hence, at the very beginning of the execution, the input buffers of tasks are placed on different
nodes due to initial placement, but after the creation of t2 (Figure 7.9d) all tasks are executed on
the same node containing both the tasks’ input and output buffers as shown in Figure 7.9e.

For blur-roberts the output only heuristic does not perform as well as the input only and weighted
heuristic. This is due to the structure of the task graph, with dependences similar to seidel and
jacobi, but with only two tasks on a dependence path. Figure 7.10a shows a simplified excerpt of
the task graph for blur-roberts. For a significant part of the tasks, the output only fails to obtain
information on data placement as the the metadata sections of the output buffers have not been
updated due to the fact that they are used for the first time (Figure 7.10b). This information is only
added to the metadata section at termination of the first tasks on the path. When these buffers are
reused, their placement is known and the output only heuristic succeeds (Figure 7.10c). Thus, the
output only heuristic does not systematically fail for all tasks and is able to improve the locality of
data accesses compared to the default task activation strategy. However, the input only heuristic is
guaranteed to be provided with accurate information just in time as the information on placement
for the second tasks on the paths is available when they become ready for execution. Similarly, the
weighted heuristic can react to the placement of input data. For tasks with missing information on
the placement of output buffers, the heuristic simply ignores output dependences and acts exactly
like the input only heuristic.

For bitonic, the improvement of data locality is less pronounced than for the other benchmarks.
In addition, the input only and output only heuristic perform equally well. The weighted heuristic,
however, yields slightly better results than the other heuristics. This is due to the influence of
the task graph on the different heuristics illustrated in Figure 7.11, showing a subset of the task
graph of bitonic. Assume that initially, the input buffers of t0, to0, t1 and ti1 are placed as shown in
Figure 7.11a. The input only heuristic causes t0 to be executed on the node containing its input data,
leading to the allocation of the input buffers of t2 on the same node as t0 (Figure 7.11b). When t1
becomes ready, it is scheduled on the node containing its input buffers, causing the input buffers of
t3 to be allocated on the same node as shown in Figure 7.11c. This leads to an alternating placement
with limited data locality as seen earlier for the input only heuristic applied to seidel and jacobi.

However, in contrast to these benchmarks, the output only heuristic does not trigger the same
synergistic effect leading to both local read and write accesses. Consider Figure 7.11d, which shows

147

Chapter 7: Data-aware scheduling

(a) Initial placement

(b) input only heuristic, first
step

(c) input only heuristic,
second step

(d) output only heuristic, first
step

(e) output only heuristic,
alternative first step

(f) Possible outcome for the
second step using the
weighted heuristic

Figure 7.11: Effect of the push heuristics on bitonic

148

Chapter 7: Data-aware scheduling

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic

20

40

60

80

100

Fr
ac

tio
n

of
 lo

ca
lly

 p
la

ce
d

da
ta

 (a
pp

r.)
 [%

]

13.6

52.4

84.2 84.4

39.4

50.9

82.4 82.9

31.5

54.6

89.4 90.6

31.6

49.3

77.6 78.3

18.1

77.1

91.9 93.3

28.5

56.9

36.4

56.9

41.7

51.8 51.5

63.8

random
input only
output only
weighted

(a) Opteron system

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic
0

20

40

60

80

Fr
ac

tio
n

of
 lo

ca
lly

 p
la

ce
d

da
ta

 (a
pp

r.)
 [%

]

5.0

43.4

75.5 75.7

31.2

42.3

73.5 73.5

27.6

48.6

84.8 85.3

21.5

39.3

62.1 63.1

9.7

61.2

84.0 85.2

13.4

43.9

21.0

43.9

27.2

43.0 40.3

51.9

random
input only
output only
weighted

(b) SGI system

Figure 7.12: Approximation Rappr
loc of the locality for the push heuristics

a possible outcome for the task ownership of t0. Although there is a beginning of a path of tasks
with input buffers on the same node including t1 and t2, it is not guaranteed that these tasks will
be scheduled to nodes that ensure local accesses. For example, where t1 will be scheduled also
depends on the placement of to0, which is created by another task. Hence, the input buffers of t3
might be allocated on a different node than t2 and the path of tasks with input data on the same
node finishes, leading to a lower locality of memory accesses. In addition, t0 could have been
scheduled differently, as shown in Figure 7.11e, where a worker on the node containing the input
buffers of to0 is the owner of t0. In this case, the input buffers of t2 are allocated on a different node
than those of t1, leading to an alternating pattern for the placement of input buffers with lower
data locality.

The weighted heuristic initially has the choice between a worker of the node containing the
input buffers of t0, t1 or to0. If a worker on the same node as to0 or t0 is chosen, the input buffers of t1
and t2 will be allocated on different nodes. However, if the same node as the node containing the
input buffers of t1 is chosen, t1 is guaranteed to execute on the node containing its input buffers
(the cost for this node will be minimal among all nodes since it contains the entire input buffers
as well as half of the output buffers representing three quarters of the working set of t1). This
causes the input buffers of t3 to be allocated on the same node as t1 and t2 as shown in Figure 7.11f.
Afterwards, this pattern repeats for t2 and t3 and the series of dependent tasks whose input buffers
are placed on the same node is not interrupted as easily as for the output only heuristic. The locality
of data accesses for the weighted heuristic is thus higher than the locality for the other heuristics.

Figure 7.12 shows the approximation Rappr
loc of the locality for the push heuristics on the Opteron

and the SGI system. The locality for the Opteron system measured with hardware performance
counters of Figure 7.8 is well reflected by the approximation in Figure 7.12a. Figure 7.13 shows
the median of the relative error in per cent of the approximation with error bars indicating the

149

Chapter 7: Data-aware scheduling

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic

20

0

20

40

60

Re
la

tiv
e

er
ro

r [
%

]

-22.9 -3.0
4.1 3.0

-20.9 -4.2 2.1 1.6 -21.0 -2.9
4.2 3.8

-8.9 -4.2 1.7 1.4 -25.5 -4.3 1.0 0.6

19.3

55.3

23.3

55.7

-7.0 -4.3 -2.0 -0.6

random
input only
output only
weighted

Figure 7.13: Relative error of Rappr
loc over the locality measured with hardware performance counters

standard deviation. Besides an underestimation of the locality for random work-stealing without
pushing and an overestimation of the locality of blur-roberts, the relative error is equal to or less
than five per cent and thus relatively low. Hence, it is reasonable to assume that the approximation
for the SGI system shown in Figure 7.12b reflects the actual locality for the push heuristics for seidel,
jacobi-1d, jacobi-2d, jacobi-3d, k-means and bitonic. The results shown in this graph are very similar to
the results for the Opteron system presented above and the conclusions are the same. Thanks to
the use of architecture-independent concepts and the adaptation of the work-pushing heuristics
to the respective target platform through the definition of an appropriate function modeling the
cost of data transfers, the work-pushing heuristics perform similarly for each benchmark on both
machines. The push heuristic that yields the best locality for memory accesses depends on the
benchmark and not on the topology of the machine, which emphasizes the portability of both
work-pushing as well as the applications.

Impact on performance

Figure 7.14 shows the speedup of the executions with work-pushing enabled over the default
randomized work-stealing without work-pushing. The improvements on the locality of accesses to
main memory result in a significant increase of the performance for most of the memory-intensive
benchmarks with speedups of up to 2.36×. The only exception to this rule are the input only
heuristic for jacobi-1d on both systems (0.87× and 0.75×), jacobi-2d on the SGI system (0.92×) and
jacobi-2d on the SGI system (0.96×) as well as the output only heuristic for blur-roberts on the Opteron
system (0.97×). For the jacobi benchmarks, this can be explained with the effect shown earlier in
Figure 7.9c. Although the locality of read accesses to main memory is significantly higher, resulting
in an overall locality that is higher than rnd, almost all write accesses target remote memory and
performance is lower compared to rnd. As far as blur-roberts is concerned, the output only heuristic
fails too often due to missing information on data placement as explained above. In the remaining
cases, the heuristic causes a slight load imbalance across memory controllers and thus decreases
performance. On the SGI system, this is not the case and the improvement of data locality reduces
the execution time in comparison to rnd.

The performance of k-means is not affected on the Opteron platform and only increases slightly
on the SGI system with a maximum speedup of 1.08×. This is due to the fact that this benchmark
has a very low cache miss rate in contrast to the other benchmarks, which are clearly memory-
bound. Hence, the locality of the few memory accesses missing the last level cache only has
little influence on performance. Another interesting observation is that the speedup over random
work-stealing without work-pushing is generally higher for the SGI system. This is a result of an
increased ratio of the average latency of accesses to remote memory over the latency of accesses to
local memory compared to the Opteron system. In addition, the higher number of nodes leads to a
lower initial locality of random work-stealing on this platform.

Considering the geometric mean of the mean speedups, shown at the right side of the figures,
it can be concluded that in most cases the weighted heuristic performs best (1.26× and 1.50×),

150

Chapter 7: Data-aware scheduling

followed by the output only heuristic (1.22× and 1.42×) and the input only heuristic (1.07× and
1.04×). Hence, using the weighted heuristic as the default heuristic for work-pushing might be
most beneficial for the average performance of applications whose behavior has not been studied
in detail. However, although the input only heuristic performs less well than the other heuristics, it
can be beneficial combined with NUMA-aware allocation, as shown in the next chapter.

The speedups of random work-stealing without work-pushing and the different push heuris-
tics over the shared memory implementations with interleaved allocation are summarized in
Figure 7.15. For the Opteron system, the experiments yield the following results. The output only
and weighted heuristic allow the dynamic single assignment version of seidel to compensate the
low performance of rnd and exceed the performance of the shared memory implementation with
a speedup of 1.2×. The execution time of work-pushing using the input only heuristic for this
benchmark is approximately the same as for the shared memory implementation. For jacobi-1d,
the initial performance of rnd is much lower than the shared memory baseline (0.63×). Even the
improvements of the output only and weighted heuristic with speedups of 0.75× and 0.76× cannot
increase performance above this level. The jacobi-2d benchmark yields similar performance for rnd
and input only. Both of these configurations have a higher execution time than the shared memory
implementation with speedups of 0.76× and 0.8×. However, the output only and weighted heuristic
increase performance of jacobi-2d to the same level as the shared memory implementation (1.04×
and 1.05×). The initial performance of rnd for jacobi-3d already slightly exceeds the performance
of the shared memory implementation (1.02×) and each push heuristic widens this gap (1.17×,
1.41× and 1.42×). As mentioned above, the k-means application is insensitive to data placement on
the Opteron system due to its low cache miss rate. The initial performance of this benchmark is
worse than shared memory due to the copying of read-only data from one task to another. Hence,
the performance of all configurations remains lower than for the shared memory implementation.
For blur-roberts all dynamic single assignment configurations, with or without work-pushing,
outperform the shared memory implementation with a speedup of up to 1.23× for the input only
and the weighted heuristic. The performance increase resulting from work-pushing for the bitonic
benchmark are not sufficient to meet the performance of the shared memory implementation, the
maximum speedup is only 0.60×.

For the SGI platform, the results for the comparison with the shared memory implementations
are similar. A notable exception is jacobi-1d, which performs significantly better than the shared
memory implementation even for default random work-stealing without work-pushing (1.58×).
This performance is further improved when using either the output only (2.49×) and the weighted
heuristic (2.50×). Also, the output only and the weighted heuristic allow the jacobi-2d benchmark to
exceed the performance of the shared memory implementation more distinctly (1.17× and 1.18×)
than on the Opteron platform. The geometric mean of the mean speedups shows that using the
output only or the weighted heuristic, the dynamic single assignment versions outperform the shared
memory implementations on average. For the Opteron platform, the geometric mean for these
heuristics is still a bit lower than one. The reason for the higher values on the SGI platform is that
remote accesses on this platform have a higher latency, such that accesses to data that is distributed
over all nodes as in the shared memory benchmarks are slower. Hence, the higher the ratio of
the latency of remote memory accesses over the latency of local memory accesses, the more data
locality becomes important for performance and the more techniques such as work-pushing are
beneficial.

7.4.3 Results for topology-aware work-stealing

The following presentation of the results for topology-aware work-stealing has the same order
as the presentations of the results for the push heuristics: we first analyze the impact on the
locality of accesses to main memory and demonstrate the resulting performance over random
work-stealing without work-pushing. We then show how work-pushing with topology-aware
work-stealing performs compared to the shared memory implementations. As topology-aware
work-stealing relies on the matching of task and data ownership restored by work-pushing, we do
not evaluate topology-aware work-stealing with the default task activation scheme.

151

Chapter 7: Data-aware scheduling

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic Geometric mean

0.8

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

ov
er

 ra
nd

om
 w

or
k-

st
ea

lin
g

1.39

1.72 1.73

0.87

1.19 1.21

1.05

1.37 1.38

1.15

1.38 1.39

1.00 1.00 1.00
1.09

0.97

1.09
1.03 1.04

1.16
1.07

1.22
1.26

input only
output only
weighted

(a) Opteron system

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic Geometric mean
0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

ov
er

 ra
nd

om
 w

or
k-

st
ea

lin
g

1.37

2.28 2.36

0.75

1.57 1.58

0.92

1.68 1.70

0.96

1.39 1.37

1.06 1.07 1.08

1.35
1.12

1.36

1.04
1.15

1.33

1.04

1.42
1.50

input only
output only
weighted

(b) SGI system

Figure 7.14: Speedup of the push heuristics over default random work-stealing without work-pushing

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic Geometric mean
0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sp
ee

du
p

ov
er

 S
HM

 w
/ i

nt
er

le
av

in
g

0.70

0.97

1.20 1.20

0.63
0.54

0.750.76 0.76 0.80

1.04 1.05 1.02

1.17

1.41 1.42

0.90 0.90 0.90 0.90

1.13

1.23

1.10

1.23

0.520.54 0.54
0.60

0.78
0.84

0.95 0.99

rnd
input only
output only
weighted

(a) Opteron system

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic Geometric mean

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

ov
er

 S
HM

 w
/ i

nt
er

le
av

in
g

0.95

1.31

2.17 2.26

1.58

1.19

2.49 2.50

0.69 0.64

1.17 1.18 1.09 1.05

1.51 1.49

0.610.64 0.65 0.65

1.12

1.51
1.26

1.52

0.520.54 0.60
0.69

0.88 0.92

1.25 1.32

rnd
input only
output only
weighted

(b) SGI system

Figure 7.15: Speedup of the push heuristics over the shared memory implementations

152

Chapter 7: Data-aware scheduling

Locality of accesses to main memory

Figure 7.16 shows the locality of requests to main memory Rloc for the different work-pushing
heuristics combined with topology-aware work-stealing on the Opteron platform. Compared
to the configurations that use work-pushing only of Figure 7.8, the locality of memory accesses
resulting from the combination of work-pushing with topology-aware work-stealing is significantly
higher and reaches a value of more than 90% for all applications, except blur-roberts and bitonic. To
highlight these differences, Figure 7.17 shows the relative improvement of the combination of the
approaches over work-pushing only. Each bar shows the median of the relative improvement of
the locality over the median for the data locality of work-pushing only expressed in per cent. For
example, the first value of 22.6% for topology-aware work-stealing and the input only heuristic at
execution of the seidel benchmark indicates that the fraction of accesses to local memory is 22.6%
higher compared to work-pushing with the input only heuristic with random work-stealing. The
figure shows that data locality is improved for all work-pushing heuristics and all benchmarks.
The geometric mean ranges from 8.8% for the weighted heuristic to 12.2% for the input only heuristic.
The lower improvements for output only and weighted are due to the fact that data locality for these
heuristics without topology-aware work-stealing is already very high and thus more difficult to
improve than for the input only heuristic.

Figure 7.18 shows the approximation for the fraction of accesses to local memory for the
SGI system. As was the case for the Opteron system, topology-aware work-stealing improves
the locality of all benchmarks and all heuristics. The relative improvement over work-pushing
without topology-aware work-stealing presented in Figure 7.12b is shown in Figure 7.19. The high
variation of blur-roberts and the output only heuristic results from different timings of buffer reuse
and thus different availability of information on buffer placement upon task activation mentioned
in Section 7.4.2, such that the results for this benchmark should not be taken into account. We have
therefore excluded blur-roberts from the calculation of the geometric mean.

In conclusion, topology-aware work-stealing improves the locality of memory accesses on both
systems for all benchmarks and almost reaches the maximum locality with values close to or higher
than 90% for most of the benchmarks.

Impact on performance

To quantify the impact of the increased data locality of topology-aware work-stealing on
performance, Figure 7.20 shows the reduction of execution time of the different push heuristics with
respect to work-pushing without topology-aware work-stealing. For seidel, jacobi-2d, jacobi-3d and
bitonic the execution time can be reduced on both systems and for all work-pushing heuristics.The
impact on performance for the k-means and blur-roberts benchmark is slightly negative on the
Opteron platform, while the results for these applications are mixed on the SGI system. The same
applies to the JACOBI-1D benchmark on the SGI system only. For k-means on the SGI system the
median value corresponds to a slight reduction of the execution time, but the variation is high as
indicated by the large standard deviation.

Figure 7.21 shows the speedup of the dynamic single assignment versions with work-pushing
and topology-aware work-stealing over the shared memory implementations. The characteristics
are similar to Figure 7.15. Configurations whose performance already exceeded the performance
of the shared memory implementation without topology-aware work-stealing keep this advantage
and configuration with initial lower performance still require more time to execute than the
baseline.

7.5 Summary and conclusion
In this chapter, we showed that the default task activation scheme, which adds a newly activated

task to the single entry software cache of the activating worker, can lead to a mismatch between
task and data ownership and thus to poor data locality during execution of the task. In particular,
the locality can depend on the timing of the execution of the task’s producers or on the structure of
the dynamic task graph as well as the order of task creation by the parallel control program. To

153

Chapter 7: Data-aware scheduling

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic

20

40

60

80

100

Fr
ac

tio
n

of
 re

q.
 to

 lo
ca

l m
em

. [
%

]

17.6

66.2

91.0 92.9

49.8

61.4

91.7 92.7

39.9

64.5

92.0 93.5

34.7

59.2

89.4 90.2

24.3

84.8
92.9 94.4

23.8

39.8
33.4

39.8
44.8

60.0 61.8

72.1

random
input only+taws

output only+taws
weighted+taws

Figure 7.16: Locality of requests to main memory on the Opteron system for the push heuristics combined
with topology-aware work-stealing

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic Geometric mean
0

5

10

15

20

25

Re
l.

im
p.

 o
v.

 w
or

k-
pu

sh
in

g
on

ly
 [%

]

22.6

12.4 13.5

15.6

13.6 13.7
14.7

7.2 7.1

15.1 17.1 16.9

5.3

2.2 1.8

8.7

13.4

8.9
10.8

17.7

12.3 12.2
10.1

8.8

input only+taws output only+taws weighted+taws

Figure 7.17: Relative improvement of the locality of requests to main memory on the Opteron system for
the push heuristics combined with topology-aware work-stealing

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic
0

20

40

60

80

100

Fr
ac

. o
f r

eq
. t

o
lo

c
m

em
 [%

] (
ap

pr
.)

5.0

53.0

92.7 93.4

31.2

52.4

89.9 89.7

27.6

58.1

93.8 94.6

21.5

48.6

84.9 85.7

9.7

73.3

92.7 93.3

13.4

57.8

28.4

57.4

27.2

51.4 51.3

64.2

random
input only+taws

output only+taws
weighted+taws

Figure 7.18: Approximation Rappr
loc of the locality for the push heuristics combined with topology-aware

work-stealing for the SGI system

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic Geometric mean
0

10

20

30

40

50

60

70

Re
l i

m
p

ov
 w

or
k-

pu
sh

in
g

[%
] (

ap
pr

)

22.1 22.9 23.3 24.0 22.2 22.1 19.5

10.5 11.0

23.6

36.8 35.8

19.7

10.3 9.6

31.7

35.1

30.7

19.6

27.2
23.6

21.3 19.5 18.9

input only+taws
output only+taws
weighted+taws

Figure 7.19: Relative improvement of the approximation Rappr
loc of the locality of requests to main memory

on the SGI system for the push heuristics combined with topology-aware work-stealing

154

Chapter 7: Data-aware scheduling

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic Average
5

0

5

10

Re
du

ct
io

n
of

 e
xe

cu
tio

n
tim

e
[%

] 9.8

4.9
6.0

8.1
9.3

8.0 7.3

3.9 3.4

4.6

7.5 7.8

-0.9 -0.5 -0.7 -2.3 -2.5 -2.3

2.8 2.4

4.8
4.2 3.6 3.8

input only+taws
output only+taws
weighted+taws

(a) Opteron system

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic Average

10

0

10

20

Re
du

ct
io

n
of

 e
xe

cu
tio

n
tim

e
[%

]

6.2

19.6
17.3

-8.0

5.5

-0.1
4.9

8.7 7.8
3.7

12.1

6.6

1.6 2.5 2.5

-6.2

1.7

-8.6

6.7
7.6

13.2

1.3

8.2
5.5

input only+taws output only+taws weighted+taws

(b) SGI system

Figure 7.20: Improvement of the execution time of the push heuristics combined with topology-aware
work-stealing compared to work-pushing only

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic Geometric mean
0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sp
ee

du
p

ov
er

 S
HM

 w
/ i

nt
er

le
av

in
g

0.70

1.07

1.26 1.28

0.63 0.59

0.82 0.82
0.76

0.86

1.08 1.08
1.02

1.23

1.521.54

0.90 0.89 0.90 0.90

1.13
1.21

1.07

1.21

0.52 0.550.56
0.63

0.78
0.88

0.99 1.03

rnd
input only+taws

output only+taws
weighted+taws

(a) Opteron system

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic Geometric mean

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

ov
er

 S
HM

 w
/ i

nt
er

le
av

in
g

0.95

1.40

2.70 2.73

1.58

1.10

2.64
2.50

0.69 0.67

1.28 1.28
1.09 1.09

1.72
1.60

0.61 0.65 0.67 0.67

1.12

1.43
1.28

1.40

0.520.58 0.65
0.80 0.88 0.93

1.36 1.40

rnd
input only+taws
output only+taws
weighted+taws

(b) SGI system

Figure 7.21: Speedup of the push heuristics combined with topology-aware work-stealing over the shared
memory implementations

155

Chapter 7: Data-aware scheduling

reduce the mismatch between the ownership of data and tasks and thus to increase the locality of
accesses to main memory, we proposed work-pushing, which transfers a task to a worker of an
appropriate node upon activation according to a heuristic based on dynamic information on the
placement of the task’s input and output buffers. We presented three heuristics for the selection of
this node, which take into account only input buffers, only output buffers or both kinds of buffers.
We also showed that the default random work-stealing mechanism can cause accesses to remote
memory even with matching task and data ownership. To mitigate this problem, we introduced
topology-aware work-stealing, which prioritizes steals from nearby workers.

The experimental evaluation showed that work-pushing and topology-aware work-stealing
can be integrated into the run-time system and improve the data locality significantly on an AMD
Opteron system with eight NUMA nodes as well as on an SGI platform with 24 NUMA nodes.
On both platforms, the fraction of accesses to local memory using these techniques comes close to
the maximal locality with values close to or above 90% for most of the applications. We showed
that data placement can be essential for the performance as for memory-intensive applications
the improvement of the locality translates into a significant reduction of the wall clock execution
time. The maximal speedup over the default task activation scheme with random work-stealing is
as high as 1.73× on the Opteron platform and reached 2.36× on the SGI system. In some cases,
the improvements on execution time allow the dynamic single assignment implementations to
outperform the parallel shared memory baseline (seidel, jacobi-2d and jacobi-3d on the Opteron
system and seidel as well as jacobi-2d on the SGI system) with speedups of up to 1.42× on the
Opteron system and 2.50× on the SGI system. For another set of benchmarks, namely jacobi-1d
and jacobi-3d on the SGI system as well as blur-roberts on both systems, the performance of the
dynamic single assignment versions already exceeds the performance of the shared memory
implementations when using the default task activation scheme and random work-stealing and
can be improved further using work-pushing and topology-aware work-stealing. Finally, the
performance of k-means and bitonic can be improved in some cases, but remains lower than the
performance of the shared memory baseline. We showed that work-pushing and topology-aware
work-stealing are portable across the test systems thanks to the use of platform-independent code
in conjunction with light-weight descriptions of the hardware topology. Which work-pushing
heuristic performs best and whether topology-aware work-stealing should be applied depends
on the application. However, in most cases, the weighted heuristic yields the best results and
topology-aware work-stealing improves performance.

Work-pushing and topology-aware work-stealing are techniques that react to the placement
of data and only influence data placement indirectly. In the next chapter, we focus on run-time
mechanisms for memory allocation and introduce techniques that improve the locality of accesses
to main memory through active data placement.

156

8 Deferred allocation

The work-pushing heuristics and topology-aware work-stealing presented in the previous
chapter react to the placement of data and assign tasks to workers whose associated nodes have the
lowest latency for accesses to the data. The placement of input buffers is only addressed indirectly
through allocations within the memory pools of the workers that execute the creating tasks. The
restriction of the OpenStream execution model, which defines that a task cannot create a direct
consumer, causes the input buffers of tasks to be placed in advance before the nodes of the workers
executing the tasks producers are known. This can lead to data placement that is unfavorable for
the locality of accesses using either work-pushing heuristic or topology-aware work-stealing.

In this chapter, we analyze the impact of the default mechanism for the allocation of input
buffers on data locality and load balancing across memory controllers. We then present a memory
allocation technique which we refer to as deferred allocation that aims at mitigating the issues related
to early allocation. We show that deferred allocation decouples task creation from data placement
and improves both data locality and data distribution. We also illustrate an important side effect
of deferred allocation that allows the run-time to decrease an application’s memory footprint. The
concepts of deferred allocation are evaluated on the same set of benchmarks as in the previous
chapter.

8.1 Influence of the allocation mechanism on data locality
In the default scheme for memory allocation of the OpenStream execution model, all input

buffers of a task are allocated when the task is created. To distinguish this allocation mechanism
from the concepts introduced below, we use the term immediate allocation in the remainder of this
chapter. Figure 8.1a shows the graph with a task t, which depends on n producers p0 to pn−1 and
which is created by tc. During the execution of tc, the creation of t is triggered and the input buffers
of t are allocated and associated to t as indicated by the buffers connected with dashed lines. A
detailed view of the run-time structures involved in this process is given in Figure 8.1b. As a result
of the separation of input data from input views, introduced in Section 4.3, only the data structures
representing input views of t are embedded in its data-flow frame with data fields pointing to
the respective input buffers. The placement of these buffers is determined before t becomes ready
and depends on the node associated to the worker that executes tc. The main drawback of this
placement strategy is that it does not take into account on which nodes p0 to pn−1 execute. If these
tasks are executed by workers on different nodes than the worker that executed tc, all of the write
accesses target remote memory, which leads to a high average latency of memory accesses. In this

Chapter 8: Deferred allocation

... ...

(a) Task graph with n
producers providing the
input data of a task t

next
rpos

horizon
burst

in
_v

ie
w

0

next
rpos
data

horizon
burst

in
_v

ie
w

1

data

next
rpos
data

horizon
burst

in
_v

ie
w

n-
1

...

(b) Data-flow frame, input views and input buffers after task creation

Figure 8.1: Immediate allocation of input buffers

section, we examine under which circumstances the producers of a task are executed on workers
of different nodes than the creating task. This can be due to the structure of the task graph and
the control program or due to work-stealing events. We first analyze the influence of the control
program on data locality using immediate allocation, followed by an analysis of the influence of
work-stealing. Finally, we show that the creation of initial tasks is an important part of the control
program and greatly determines initial data placement when using immediate allocation.

8.1.1 Influence of the control program

A common strategy for the creation of tasks in a parallelized control program is that tasks
create their grandchildren in the task graph, as shown in Figure 8.2a. If this pattern of task creation
follows a path of heavy dependences and if the input buffers of the task between the creating task
and the created task is allocated on the same node as the creator, this results in a chain of tasks
with input buffers on the same node and enables execution with a high fraction of accesses to local
memory. However, for unbalanced dependences the relationship between the control program and
data locality can be more complex and it can be less clear in which order tasks should be created to
favor a high fraction of accesses to local memory. Consider the excerpt of the task graph of the
bitonic benchmark shown in Figure 8.2b, in which two tasks ta and tb are created by their respective
grandparents tac and tbc. The predecessors of tac and tbc have common ancestors in the task graph
(not shown in the figure), but the path of dependences from the nearest common ancestor to these
tasks is long and includes numerous tasks with balanced dependences. It is thus likely that the
input buffers of ta and tb are placed on different nodes, which in turn results in a placement of
the input buffers of ta and tb and their respective siblings tas and tbs on different nodes. Hence,
independently from the choice of the workers for execution, their parent tasks tap and tbp each write
at least half of their input data to buffers on a remote node. A control program, in which ta and
its sibling tas as well as tb and its sibling tbs are created by the same node, as shown in Figure 8.2c,
might be more convenient as tap and tbp can be scheduled to workers for which all of the write
accesses target local memory.

However, adapting the control program to avoid remote write accesses can be a tedious
and complicated task. Some choices for the order of task creation might seem reasonable when
analyzing a small excerpt of a task graph, but can have a negative impact on the tasks in other parts
of the graph. Hence, the development of a control program resulting in a low number of remote
write accesses often requires a global understanding of large parts of the task graph. However,
ideally, the control program does not have any influence on the locality of memory accesses and the
programmer can concentrate on providing sufficient parallelism without worrying about locality.
For example, there should not be any difference in the results for data locality between the creation
of t2 by t0 in Figure 8.2a and the creation of t2 by tc as in Figure 8.2d. This last pattern of task
creation represents an extreme case for immediate allocation, since t0 does not have any common

158

Chapter 8: Deferred allocation

(a) Creation of a related
task

(b) Example of task creation in
bitonic, favoring remote
accesses

(c) Example of task creation
favoring local accesses

(d) Creation of an unrelated task, by a
task on the same node as t0

(e) Creation of an unrelated task, by a
task on a different node

Figure 8.2: Influence of the control program on locality using immediate allocation

(a) Initial placement (b) Steal of ti by a remote worker

Figure 8.3: Influence of work-stealing in conjunction with immediate allocation on the locality of write
accesses

ancestor with tc. Hence, the structure of the task graph does not favor any relationship between
the worker executing tc and the worker executing t1. The probability that the input buffers of t2
are placed on the same node as t1 is low and it is more likely that this pattern for task creation
results in a placement similar to Figure 8.2e. Work-pushing can improve the locality in these cases,
but it must choose between a high fraction of local accesses for write accesses (as would be the
case when using the output only or weighted heuristic) and a high fraction of local read accesses of
t1 (such as for the input only heuristic).

8.1.2 Influence of work-stealing

The early placement due to immediate allocation can also cause remote accesses upon work-
stealing by a remote worker. Consider the initial placement in Figure 8.3a, where the input buffers
of a task ti and its successor ti+1 in a chain of heavy dependences are both placed on the same
node. If ti is stolen by a remote worker, as shown in Figure 8.3b, not only read accesses, but also
write accesses target remote memory. In addition, the input buffers of ti+2 are allocated on the
node of the worker that executes ti, such that remote accesses become inevitable during execution
of ti+1. Thus, when using immediate allocation, it is possible that a steal does not only have a
negative impact on the locality of accesses during execution of the stolen task, but also on tasks
that depend on it.

Figure 8.4 shows how the different work-pushing heuristics react to the data placement after
the steal. The input only heuristic transfers ti+1 to the node that contains the input buffers of this
task, which results in local accesses to input data, but which causes remote write accesses due to

159

Chapter 8: Deferred allocation

(a) Activation of ti+1 Work-pushing using the
input only heuristic

(b) Activation of ti+2 Work-pushing using the
input only heuristic

(c) Activation of ti+1 Work-pushing using the
output only / weighted heuristic

(d) Activation of ti+2 Work-pushing using the
output only / weighted heuristic

Figure 8.4: Work-pushing after a steal using immediate allocation

the placement of the input buffers of ti+2 (Figure 8.4a). Similarly, ti+2 must be transferred upon
activation, resulting in local accesses to input data but also in remote write accesses to output
buffers as shown in Figure 8.4b. The locality of accesses is higher when using the output only or
weighted heuristic as illustrated by Figure 8.4c and 8.4d. An important point is that these heuristics
keep the tasks ti+1 and ti+2 on the worker that initially stole ti if ti is the producer of ti+1 that
finishes last and if ti+1 is the last producer of ti+2. This ensures that the worker can obtain work
simply by removing a task from the software cache (indicated by the label take in the figures) and
thus does not have to steal another task right after the execution of ti. However, if these tasks do
not finish last among all producers, ti+1 and ti+2 are each transferred to a worker on the same
node and the amount of locally accessed data remains the same.

8.1.3 Influence of the creation of initial tasks

Although the creation of initial tasks is part of the control program, whose influence has been
discussed above, this phase deserves particular attention as it largely influences data distribution
at the beginning of the execution. In order to provide sufficient parallelism at the beginning of the
execution, the creation of initial tasks is parallelized in the benchmarks presented in Section 6.1.
Instead of creating all initial tasks during execution of the root task, the root task creates a set of
auxiliary tasks whose only purpose is to create the initial tasks of the application. At the beginning
of the execution these tasks are stolen by the remaining workers and thus execute in parallel,
resulting in parallel creation of the initial tasks.

Figure 8.5a illustrates this principle on the jacobi-1d benchmark. The root task r creates n auxil-
iary tasks t0c to tn−1c , which in turn create the first two tasks on each chain of heavy dependences
associated to each block of data 1. A large fraction of the tasks t0c to tn−1c is stolen by remote workers,
which causes the input buffers of the first tasks on the chains to be spread across the machine’s
memory controllers. Hence, a side effect of the parallelization of the creation of initial tasks is
a distribution of data that avoids the placement of an excessively large fraction of input data is
placed on the node of the worker executing the root task. This is shown in Figure 8.5b, where the
input buffers of the initial tasks are spread in a uniform manner across the nodes. Note that the
right semi-circle of the first tasks of the chains of heavy dependences below the auxiliary tasks for
task creation do not indicate any data placement, since these tasks do not have input dependences
and thus do not have input buffers.

In practice, some nodes might be privileged for steals of the t0c to tn−1c from the worker executing
the root task due to faster access time to the memory of the node on which the worker executes.

1. In the actual implementation the number of tasks created is four, but to keep the task graph simpler, we have shown
the creation of two tasks per auxiliary task.

160

Chapter 8: Deferred allocation

......

......

...... ...

...... ...

...... ...

...... ...

(a) Structure of the task graph

(b) Distribution of initial data on multiple nodes

(c) Imbalance due to uneven distribution of auxiliary tasks

(d) High number of tasks created by each auxiliary task for task creation, leading to an
imbalanced distribution of data

Figure 8.5: Influence of the creation of initial tasks on data locality

161

Chapter 8: Deferred allocation

As a result, it is possible that these workers steal more auxiliary tasks for task creation than others,
resulting in a situation such as the one illustrated in Figure 8.5b, where the amount of data varies
between nodes. This leads to imbalance at the beginning of the execution and can cause contention
on the nodes containing more input buffers than others.

Different delays for work-stealing are not the only possible cause for data distributions favoring
node contention. Such an imbalance can also arise from task creation itself if the number of tasks
created by an auxiliary task is not well chosen. This is shown in Figure 8.5d, in which only m < n
auxiliary tasks t0c to tm−1c each create significantly more initial tasks than in the previous figures.
While the number of tasks and the actual set of tasks created by each auxiliary task might be
easy to determine for regularly-structured task graphs with similar progress on task execution
for each part of the graph, it might be more difficult to develop an appropriate strategy for more
complex graphs. For example, although the task graph of the one-dimensional version of the seidel
benchmark shown in Figure 8.6a is similar to the task graph of jacobi-1d it is less obvious to find a
pattern for the creation of initial tasks that does not introduce node contention. The main difference
with jacobi-1d are the dependences between tasks processing data blocks of the same iteration
represented by the horizontal arrows. The presence of these dependences is the reason that tasks at
the left side of the graph are activated earlier than tasks on the right side. The directions in which
the application progresses within the task graph are illustrated by Figure 8.6b. If the auxiliary tasks
for task creation create the tasks at the beginning of the paths with heavy dependences in groups
of horizontal neighbors the nodes containing the input buffers of tasks at the left side of the graph
are targeted more frequently at the beginning of the execution than other nodes.

In all of the cases presented above, immediate allocation plays a key role for initial data
distribution, since it determines the placement of the buffers of initial tasks at task creation. Data
distribution can depend on the topology of the hardware, on the number of tasks created by each
auxiliary task for the creation of initial tasks and on the position of the tasks in the task graph.

In the following section, we introduce deferred allocation, which aims at mitigating the negative
effects on data locality and load balancing described above. We first present the principles of this
technique and show how we have integrated this mechanism into the OpenStream run-time and
the compiler. Afterwards, we illustrate how deferred allocation mitigates the negative effects on
data locality and load balancing described above.

8.2 Deferred allocation

The main drawback of immediate allocation is that decisions for placement of data are made
before the location of execution of the task writing the data is known. Work-pushing and topology-
aware work-stealing can improve data locality and load balancing, but can only react to a given
placement that has been determined in advance. However, even with these techniques enabled,
data locality can still depend on the control program in general and the creation of initial tasks in
particular.

8.2.1 Principles of deferred allocation

To mitigate these issues, we introduce a strategy for memory allocation that we refer to as
deferred allocation. The key idea of deferred allocation is to delay the allocation and thus the
placement of each input buffer as long as possible, until the node executing the producer that
writes to the buffer is known. Hence, instead of allocating input buffers of a task upon its creation
during execution of the creating task, each input buffer is allocated by the task that writes to
it. If multiple producers write to the same input buffer, the buffer is allocated during the call to
resolve_dependences that matches the first output view with the input view, which avoids

162

Chapter 8: Deferred allocation

......

......

...... ...

...... ...

...... ...

...... ...

(a) Task graph of the one-dimensional version of seidel
......

......

...... ...

...... ...

...... ...

...... ...

(b) Progress within the task graph

Figure 8.6: Example of a task graph that requires a less obvious scheme for the creation of initial tasks to
avoid contention

163

Chapter 8: Deferred allocation

... ...

(a) Task creation

......

(b) Activation of p1
......

(c) Activation of pn−1

... ...

(d) After execution of all
producer tasks

Figure 8.7: Example of deferred allocation of the input buffers of a task t with n producers

concurrent allocations or synchronization during execution of the producers of a task 2. Hence,
deferred allocation is used only for the input buffers of input views that are matched with a single
output view, which is the case for a large majority of views in our benchmarks.

Figure 8.7 illustrates deferred allocation on the task graph of Figure 8.1a. At the creation of t
only its data-flow frame is allocated, but none of its input buffers, as indicated by the question
marks in Figure 8.7a. Let p1 be the first of the producers of t that is activated. Before the instructions
of the task body can be executed, the input buffer of t receiving the output data of p1 must be
allocated. The state after the allocation of this input buffer is shown in Figure 8.7b. The same
procedure is repeated for each of the producers when these become ready for execution. As there
is either a one-to-one mapping of the producers output views to the input views or an input buffer
was already allocated upon the call to resolve_dependences, the deferred allocations can be
carried out in parallel without any overhead for locking or synchronization. When t becomes
ready for execution, all producers have terminated and all input buffers of t are guaranteed to be
allocated as shown in Figure 8.7d.

8.2.2 Modification of the run-time

The implementation of deferred allocation requires changing the data structures and code of
the run-time. When using immediate allocation, input buffers are managed by the creating task as
well as the task that is created: the creating task allocates the input buffers and the newly created
task frees these buffers when it terminates. During dependence resolution, the data pointers of
the output views of a producer are set to addresses within the address ranges of the input buffers
of the consumers. Hence, neither the consumer task, nor the consumer view are known by an
output view. When using deferred allocation, however, allocation of input buffers is under the
responsibility of the producer. When the producer allocates the input buffer for a consumer, the
data pointer of the input view of the consumer must be set as well as the data pointer of the output
view. Thus, the producer must be aware of the address of the structure representing the input
view.

We have therefore modified the data structure representing a view in order to store the address
of the input view with which an output view has been matched during the call to resolve_
dependences. When deferred allocation is triggered, a new input buffer is allocated and its
address is made available to the producer view and the consumer view. The function that carries
out these steps is prepare_data with the pseudo-code of Algorithm 8. The function first determines
whether the data pointer of the output view vo already points to the input buffer of the consumer,
which is the case for output views providing access to the elements of an input view with multiple
producers. If the input buffer has not been allocated before, the function obtains a new buffer from

2. Restriction 4.1 in Section 4.3.1 defines a one-to-one matching of input and output views. However, in a few cases
a pattern where multiple producers write to a single input view is still useful and does not have significant impact on
performance. For example, the benchmarks studied in this thesis use a data-flow style barrier at the end of the execution,
in which a task receives integer tokens from all tasks performing the last iteration on a block of data and the root task
synchronizes with this task using a taskwait construct.

164

Chapter 8: Deferred allocation

Algorithm 8: prepare_data(vo)

1 if vo.data 6= null then
2 w ← this_worker()
3 nodew ←

local_node_of_worker(w)
4 pool← memory_pool_of (nodew)
5 vi ← vo.consview
6 vi.data← alloc(pool, vi.horizon)
7 vo.data← vi.data
8 end

Algorithm 9: prepare_data_vec(vv , num)

1 va ← view_array_base(vv)
2

3 for i ∈ {0, . . . ,num− 1} do
4 vo ← va[i]
5 prepare_data(vo)
6 end
7

8

9

the memory pool of the node on which the calling worker executes. This requires several steps. In
Line 2, the function first determines the identifier of the calling worker. This identifier is passed to
local_node_of_worker in order to obtain the identifier of the worker’s NUMA node (Line 3). The
node identifier is needed to obtain a reference to the worker’s memory pool (Line 4). The actual
allocation takes place in Line 6, in which the return value of a call to alloc is assigned to the data
pointer of the input view of the consumer. The same value is assigned to the data pointer of the
output view afterwards.

Deferred allocation for multi-dimensional views are treated by another function called prepare_
data_vec, shown in Algorithm 9. The implementation of this function is straightforward: for each
individual view prepare_data_vec simply issues a call to prepare_data.

Figure 8.8 shows the effects of deferred allocation on the data-flow frames of t and p1 of
Figure 8.7. After the creation of t in Figure 8.8a, all of the data pointers of the input views of t are
initialized to NULL. When p1 is created, the run-time calls resolve_dependences for its output
view, which causes the pointer consview to be set to the address of the respective input view of t
(Figure 8.8b). The data pointers for both the output view of p1 and the input view of t are still set
to NULL. Figure 8.8c shows the state of the data structures at the beginning of the execution of p1.
The address of the input buffer allocated during the call to prepare_data has been assigned to
the data pointer of the output view of p1 and to the data pointer of the respective input view of t.

8.2.3 Modification of the compiler

To guarantee that a producer task executes correctly, the calls to prepare_data must be issued
at the very beginning of the execution of each task that has at least one output view. To this end,
we have modified the compiler, such that it generates a call to prepare_data for each output
view and a call to prepare_data_vec for each multi-dimensional view during processing of
input and output clauses.

The following listing is used as an example to illustrate the result of the translation with the
modified OpenStream compiler supporting deferred allocation.

Listing 8.1: Task with output dependences causing the modified compiler to add calls to prepare_data to the task body

1 void stream_function(void)
2 {
3 ...
4

5 int horizon = 10;
6

7 float out_view_sq[horizon];
8 float out_view_sqrt[horizon];
9 float in_view[horizon];

10

11 #pragma omp task input(fstream >> in_view[horizon]) \
12 output(sq_stream << out_view_sq[horizon], \
13 sqrt_stream << out_view_sqrt[horizon])
14 {
15 for(int i = 0; i < horizon; i++) {
16 out_view_sq[i] = in_view[i]*in_view[i];
17 out_view_sqrt[i] = sqrtf(in_view]);

165

Chapter 8: Deferred allocation

next
rpos

horizon
burst

in
_v

ie
w

0

next
rpos

horizon
burst

in
_v

ie
w

1

next
rpos

horizon
burst

in
_v

ie
w

n-
1

...

data
consview

data
consview

data
consview

(a) After creation of t

next
rpos

horizon
burst

in
_v

ie
w

0

next
rpos

horizon
burst

in
_v

ie
w

1

next
rpos

horizon
burst

in
_v

ie
w

n-
1

...next
rpos

data

horizon
burst

ou
t_

vi
ew

consview
data
consview

data
consview

data
consview

(b) Matching of t with p1

next
rpos

horizon
burst

in
_v

ie
w

0

next
rpos

horizon
burst

in
_v

ie
w

1

next
rpos

horizon
burst

in
_v

ie
w

n-
1

...next
rpos

data

horizon
burst

ou
t_

vi
ew

consview
data
consview

data
consview

data
consview

(c) Allocation of the input buffer upon activation of p1

Figure 8.8: Immediate allocation of input buffers

18 }
19 }
20

21 ...
22 }

For each of the task’s output views a call to prepare_data must be added at the beginning of
the output views as shown in the resulting outlined task body in the listing below.

Listing 8.2: General lines of the code with deferred allocation generated by the compiler

1 void work_function_1(struct frame_1* fp)
2 {
3 prepare_data(fp->out_view_sq);
4 prepare_data(fp->out_view_sqrt);
5

6 for(int i = 0; i < fp->horizon; i++) {
7 ((float*)fp->out_view_sq.data)[i] = ((float*)fp->in_view.data)[i] *
8 ((float*)fp->in_view.data)[i]);
9 ((float*)fp->out_view_sqrt.data)[i] = sqrtf(((float*)fp->in_view.data)[i]);

10 }
11

12 tdecrease(fp->out_view_sq.owner, fp->out_view_sq.horizon);
13 tdecrease(fp->out_view_sqrt.owner, fp->out_view_sqrt.horizon);
14 tend(fp);
15 }

166

Chapter 8: Deferred allocation

8.2.4 Deferred allocation and work-pushing

Deferred allocation delays the allocation of output buffers to the moment when the core
executing a producer task is known. This improves the locality of write accesses when a producer
task is executed as shown below, but it does not address the locality of read accesses. Hence,
data locality might still need to be improved through work-pushing. When using immediate
allocation, the addresses of input buffers and output buffers of a task are known when the task
becomes ready for execution and the work-pushing heuristics presented in Section 7.2 can use both
information on the placement of input buffers and information on the placement of output buffers
to decide which worker should become the owner of the task. When using deferred allocation,
this is not necessarily the case, since the location of a subset or all of the output buffers of a task
might be determined only at the beginning of the execution of the task and can thus be unknown
at the moment the task becomes ready. The entire set of addresses of output views of a a task is
known when the task becomes ready only if all output views provide access to input views with
multiple writers, which occurs only very rarely. Hence, in most cases, the output only heuristic
and the weighted heuristic could only operate with incomplete information on the placement of
output buffers. In this case, the output only heuristic would behave like the default task activation
mechanism in which the worker satisfying the last dependence of a task becomes its owner and
the weighted heuristic would behave as the input only heuristic.

However, due to deferred allocation, the run-time can assume that the output buffers will be
placed on the node of the worker executing the task and it is sufficient for data locality to base the
transfer decision on the placement of the input buffers of a task. Thus, we have only implemented
and evaluated the input only heuristic for work-pushing in conjunction with deferred allocation.

8.3 Influence of deferred allocation on data locality
After the definition of the principles and the integration of deferred allocation into the Open-

Stream run-time, this section shows how these modifications impact the locality of accesses
compared to immediate allocation.

8.3.1 Influence of the control program

Figure 8.9 shows the placement of input buffers in a chain of tasks with heavy dependences
and the creation of a task in the chain by an unrelated task which is not a predecessor in the task
graph, as already illustrated for immediate allocation in Figure 8.2d and Figure 8.2e. Input buffers
that have not been allocated, but whose associated tasks have already been created, are labeled
with an exclamation mark. This is the case for t2 in Figure 8.9a, which has been created by tc, but
whose input buffer holding the majority of its input data has not yet been allocated. The allocation
takes place when t1 becomes active, as shown in Figure 8.9b. In contrast to immediate allocation,
the majority of the memory accesses are local, although t2 has been created by a task executed
by a remote worker. The only accesses that can target remote memory are read accesses to the
input buffers associated to light dependences if the corresponding producers have been executed
by remote workers. However, these buffers only hold a small fraction of input data, such that
read and write accesses can be considered as entirely local. For unbalanced dependences, deferred
allocation thus effectively decouples data locality from task creation by the control program.

The decoupling also applies to the task graph of Figure 8.2b with balanced and unbalanced
dependences. Figure 8.10 shows the placement of input buffers at execution of the tasks tac and tbc,
which create ta, tas , tb and tbs. Half of the input buffers of tap and tbp are placed on one node and the
other half is stored on another node, while the input buffers of ta and tb and their siblings have not
been allocated yet. The nodes to which the owners of tap and tbp are associated determine where the
input buffers of ta, tas , tb and tbs are allocated. The figures 8.10b, 8.10c, 8.10d and 8.10e show the
possible outcomes for the placement.

In Figure 8.10b, the worker executing tbc has become the owner of tap and the worker executing

167

Chapter 8: Deferred allocation

(a) Creation of t2 (b) Execution of t1,
allocation of the major
input buffer of t2

(c) Execution of t2

Figure 8.9: Decoupled control program and buffer allocation on a path of heavy dependences

(a) Execution of tac and tbc (b) Execution of ta, tas , tb and tbs (c) Execution of ta, tas , tb and tbs
with swapped owners for tap
and tbp

(d) Execution of ta, tas , tb and tbs
with identical owners for tap
and tbp

(e) Execution of ta, tas , tb and tbs
with identical owners for tap
and tbp (alternative)

Figure 8.10: Decoupled control program and buffer allocation on a path of heavy dependences

tac has become the owner of tbp. This leads to the placement of the input buffers of ta and tas on the
same node as the input buffers of tbc and the placement of the input buffers of tb and tbs on the same
node as the input buffers of tbc. A similar situation is shown in Figure 8.10c, where the owners of tap
and tbp are swapped. In both results for placement, half of the input buffers of the tasks on the right
are placed on one node and the other half is placed on another node, with high locality of memory
accesses and well balanced load. However, it is also possible that the same worker becomes the
owner of tap and tbp as shown in Figure 8.10c and Figure 8.10d. While this has an influence on load
balancing across memory controllers, the amount of locally accessed data is the same as in the
previous scenarios for data placement and thus remains high.

The previous task graph contains both balanced and unbalanced dependences, with a high
amount of the data placed on the node of the worker executing a task. However, the task graphs of
applications can contain large sub-graphs that are entirely composed of tasks with unbalanced
dependences, such as the bitonic benchmark. An excerpt of the task graph of this benchmark is
shown in Figure 8.11a. In the following discussion, we concentrate on the chain formed by the
tasks t0 to t3.

168

Chapter 8: Deferred allocation

(a) Task graph (b) Initial placement (c) Execution of t0 and ti1

(d) Execution of t1 (e) Execution of ti2 (f) Execution of t2

Figure 8.11: Deferred allocation on a task-graph with balanced dependences

Figure 8.11b shows a possible initial placement for the input buffers of t0 and ti1. To keep the
graphs at the following steps of the execution simple, we assume that the two input buffers of tasks
that do not depend on tasks on the chain are both placed on the same node (e.g., ti1 in Figure 8.11b
and ti2 in Figure 8.11d). The execution of t0 and ti1 leads to the allocation of the input buffers of
t1 as shown in Figure 8.11c. As implied by the balanced dependences, half of the input buffer is
placed on the node of the worker executing t0 and the remaining input data is placed on the node
executing ti1. During execution of t1 in Figure 8.11d, the input buffers of to1 and t2, receiving the
output of t1, are allocated locally on the node of the worker executing t1. Three quarters of the
data involved in the execution of t1 are thus accessible locally. At execution of ti2 in Figure 8.11e,
the remaining input buffer of t2 is allocated on the node of the worker executing ti2. In Figure 8.11f,
the amount of locally placed data at execution of t2 is identical to the amount of locally placed data
during execution of t1: three quarters of the data involved in the execution are accessible on the
node executing the task. In contrast to immediate allocation, deferred allocation is thus able to
provide high data locality even for tasks with balanced dependences.

8.3.2 Influence of work-stealing

Another important effect of deferred allocation is the improvement of data locality in case
of work-stealing events by remote workers. An example for such a situation is provided in
Figure 8.12. The initial placement for the input buffers of ti in Figure 8.12a is identical to Figure 8.3a
of Section 8.1.2, used for the illustration of work-stealing in conjunction with immediate allocation.
As ti is not yet ready for execution, the input buffers of ti+1 have not been allocated. The allocation
is triggered after the steal and execution of ti by a remote worker, as shown in Figure 8.12b. The
deferred allocation on the local node of the stealing worker causes only read accesses to target
remote memory and all write accesses are local. If ti satisfies the last dependence of ti+1 and if
ti+1 is the producer of ti+2 that finishes last, ti+1 and ti+2 are also executed by the worker that
initially stole ti as shown in Figure 8.12c and Figure 8.12d. However, even if this is not the case,
data locality can be restored using any of the work-pushing heuristics, as these all transfer ti+1 and
ti+2 to a node for which all of the accesses to memory target the node’s local memory.

Deferred allocation generally improves the locality of accesses to main memory of tasks stolen
by remote workers. As the output buffers of tasks are guaranteed to be allocated locally, the

169

Chapter 8: Deferred allocation

(a) Initial placement (b) Steal of ti by a remote
worker

(c) Execution of ti+1 (d) Execution of ti+2

Figure 8.12: Work-stealing in conjunction with deferred allocation

fraction of data located on the same node as the worker executing the task is at least as high as
the fraction of output data over the sum of the size of all data, i.e. output and input data. Let t be
a task with n input dependences of size δ0i to δn−1i and m output dependences of size δ0o to δm−1o .
Using deferred allocation, the fraction of locally placed data floc is:

floc ≥
∑m−1
j=0 djo∑n−1

k=0 d
k
i +

∑m−1
j=0 djo

Of course this definition is only valid if each node is provided with sufficient memory and if all
input buffers allocated from the memory pool associated to a node are placed on the node.

8.3.3 Creation of initial tasks

The decoupling of the execution location of a creating task from the placement of the input
buffers of the created task also has a positive impact on load balancing across memory controllers
upon creation of initial tasks. Neither the number of tasks created by each auxiliary task, nor faster
steals of auxiliary tasks by workers on nodes with faster accesses to the work-deque of the worker
executing the root task can lead to an imbalanced initial placement of input buffers as seen for
immediate allocation in Section 8.1.3.

Consider Figure 8.13a and Figure 8.13b with different number of auxiliary tasks for the creation
of initial tasks. As the placement of input buffers of the initial tasks is only determined upon
execution of the predecessors, the outcome is the same for both task graphs and only depends on
the timing of task execution. As in the illustration for immediate allocation, the right semi-circles
of tasks at the beginning of the chains with heavy dependences are empty due to the absence of
input buffers for these tasks. A possible scenario for the placement is shown in Figure 8.13c. Due to
the decoupling between the locations of execution of creating tasks and the placement of the input
buffers of the created tasks, as well as the improvement of the data locality upon work-stealing by
remote workers, the input buffers of initial tasks that have been created by the same auxiliary task
are not necessarily placed on the same node. Figure 8.13d illustrates the same data placement as in
Figure 8.13c but for the task graph of Figure 8.13b, in which more than two tasks are created by
each auxiliary task for task creation.

As a result of deferred allocation, load balancing across memory controllers is not predeter-
mined and only depends on computational load balancing 3. Workers that run out of work steal
additional auxiliary tasks and thus cause more data to be placed on the associated node.

8.3.4 Reduction of the memory foot print

Delayed allocation of input buffers when using deferred allocation does not only increase data
locality of write accesses, but also has an important side effect on the memory footprint of the
application. When using immediate allocation on a path of dependent tasks t0, . . . , tn, where
ti creates ti+2, at least three buffers are in use at any time between the execution of t1 and the
execution of tn−1. Figure 8.14a, showing the execution of a task ti with 0 < i < n− 1, illustrates

3. However, the placement of the metadata stored in data-flow frames is still determined by the task creation, but the
size of the metadata is small compared to the actual data stored in input buffers.

170

Chapter 8: Deferred allocation

......

......

...... ...

...... ...

...... ...

...... ...

(a) Deferred allocation with two tasks created by each auxiliary task for task creation

......

......

...... ...

...... ...

...... ...

...

(b) Deferred allocation with more than two tasks created by each auxiliary task for task
creation

(c) Possible outcome for the placement of input buffers of initial tasks when creating two
tasks with each auxiliary task for task creation

(d) Another possible outcome for the placement of input buffers of initial tasks when
creating more than two tasks with each auxiliary task for task creation

Figure 8.13: Improved data locality and load balancing resulting from the creation of initial tasks using
deferred allocation

171

Chapter 8: Deferred allocation

(a) Immediate allocation (b) Deferred allocation

Reuse

(c) Deferred allocation, reuse of the
input buffer of ti

Figure 8.14: Deferred allocation compared to immediate allocation

this property. The first buffer, which contains the input data of ti cannot be freed until ti terminates.
The second buffer, which is the output buffer of ti and which corresponds to the input buffer of
ti+1 can be freed earliest at termination of ti+1, which happens after termination of ti. As ti creates
ti+2, the input buffer of ti+2 is allocated during execution of ti and thus before termination of ti.

Figure 8.14b illustrates the same setting using deferred allocation. A first difference to the
previous scenario is that the allocation of the input buffer of ti+2 is delayed until the beginning
of the execution of ti+1. When ti+1 becomes ready, ti has terminated, since termination of ti is a
prerequisite for activation of ti+1. The input buffer of ti is not referenced any more and can be
reused for ti+2 as shown in Figure 8.14c. Hence, deferred allocation reduces the number of buffers
that have to exist simultaneously on a chain of dependent tasks by one.

Figure 8.15 on page 174 provides a more detailed view of the events related to memory
management when using deferred allocation. Figure 8.15a shows the initial state of the memory
pools of two workers wr, executing the auxiliary task that creates t0 and t1, and we, executing
the chain of dependent tasks. For simplicity, the task graph only shows the heavy dependences
between the tasks on the chain. We assume that wr and we are associated to different nodes and
thus use different memory pools. Each pool has a list of free data-flow frames, containing only the
metadata of a task, and a list of free input buffers. Let sf be the size of objects corresponding to
frames and let sv be the size of objects in the pool corresponding to the size of the input buffers
used by the tasks on the chain. Initially, all free lists are empty, as shown in Figure 8.15a. When
execution of the auxiliary task for task creation starts, t0 is created and wr refills the free list for
frames in its local memory pool (Figure 8.15b). A refill for the list of input buffers is not necessary
as t0 does not have any input dependences. Next, the data-flow frame of t0 is initialized, but the
task remains blocked due to the missing consumer t1 (Figure 8.15c). When t1 is created, t0 becomes
ready (Figure 8.15d) and can be stolen by we 4 (Figure 8.15e). At the beginning of the execution
of the task body of t0, the input buffer of t1 is allocated. This is shown in Figure 8.15f, where we
carries out a refill operation on the list of free input views. The input view is taken from the free list
(Figure 8.15g) and t2 is created, which causes a refill of the list of free frames of we, followed by a
remove of the first free object from that list in Figure 8.15h. The task t0 then finishes execution and
activates t1, which allows we to free the frame of t0 (Figure 8.15i). Upon execution of t1 deferred
allocation triggers and removes an objects from the list of free views of we (Figure 8.15j). At this
point, no further refill operations are necessary, since three frames and two views can be used at the
same time. Hence, upon creation of t3, the frame of t0 can be reused (Figure 8.15k) and the input
buffer of t1 can be reused as the input buffer of t3 upon deferred allocation by t2 (Figure 8.15l).

The total amount of memory that can be saved due to the reduction of the number of co-existing
input buffers during execution of tasks on a chain directly depends on the size and structure of
the task graph. For a high number of chains with inter-chain dependences that prevent chains
from executing to the end before executing tasks from neighboring chains, such as in seidel, the
jacobi benchmarks or the bitonic sorting network, the memory that can be saved directly depends
on the number of chains present in the task graph. Using deferred allocation, the number of refill

4. In reality t0 stays in the software cache of wr and cannot be stolen at this point. However, each auxiliary for task
creation task usually creates and unblocks more than a single task, such that t0 is quickly transferred to the work-deque of
wr and gets exposed to steals.

172

Chapter 8: Deferred allocation

operations on memory pools can be reduced, which results in a lower memory footprint of the
application and which reduces overhead for the initialization of buffers upon physical allocation.

8.4 Experimental results
In this section, we evaluate the impact of deferred allocation using the benchmarks of Section 6.1.

We first analyze the locality of memory accesses as well as the reduction of the applications’ memory
footprints before showing the impact on performance. The following abbreviations are used to
identify the different configurations:

– rnd refers to default random work-staling, immediate allocation and without work-pushing
or topology-aware work-stealing,

– dfa refers to deferred allocation only without work-pushing or topology-aware work-stealing,
– dfa+input only is used for deferred allocation and work-pushing with the input only heuristic

and,
– dfa+input only+taws refers to deferred allocation with work-pushing and topology-aware

work-stealing.

Due to the excessive memory footprint of the cholesky benchmark without broadcast-specific
optimizations, the results for this benchmark will be presented in Chapter 9.

Data locality

Figure 8.16 shows the fraction of requests to local main memory over the total number of
requests to main memory for the execution of our benchmarks on the Opteron platform. Thanks
to the high locality of write accesses, deferred allocation only already improves data locality
significantly for all of the benchmarks. For seidel, jacobi-1d, jacobi-2d, jacobi-3d, k-means and bitonic
about two thirds of all requests target local memory. The low locality of memory accesses in the
blur-roberts benchmark can be explained with the fact that its task graph only contains very short
paths of heavy dependences. Thus, accesses to the input matrix and the output matrix in shared
memory with interleaved allocation, as explained in Section 5.3.4, have a large impact on data
locality.

Work-pushing using the input only heuristic can further improve data locality of all benchmarks
with the highest improvements for seidel, jacobi-1d, jacobi-2d, jacobi-3d, and k-means. More than 85%
of the requests to main memory of these benchmarks target local memory. For blur-roberts the
improvement is much lower due to the influence of the matrix in shared memory explained above.
For the bitonic benchmark, work-pushing only yields a minimal increase of data locality. This is
due to the fact that the activating workers of the vast majority of tasks are workers that provided
half of the tasks’ input data, such that in most cases work-pushing does not initiate a transfer to a
remote worker. The difference between the default task activation mechanism and work-pushing
is thus minimal.

Except for blur-roberts, topology-aware work-stealing increases the locality of accesses to main
memory for all benchmarks. For seidel, jacobi-1d, jacobi-2d, jacobi-3d and k-means deferred allocation
combined with work-pushing and topology-aware work-stealing leads to more than 90% of the
requests to main memory that target local memory and thus yields almost maximum locality. For
bitonic, this value is lower due to the balanced dependence pattern, but still reaches a value that is
greater than 75%.

As in the analysis of the results for data locality for the different work-pushing heuristics
and topology-aware work-stealing in the previous chapter, we cannot provide results for the
locality of accesses to main memory for the SGI platform gathered using hardware performance
counters due to the lack of support by the operating system. In addition, deferred allocation makes
it impossible to determine the location of output buffers before execution of a task. Hence, the
approximation of the fraction of memory accesses to local memory Rappr

loc as defined in Section 7.4.1
cannot be calculated based on placement information gathered before task execution. Therefore,

173

Chapter 8: Deferred allocation

(a) Initial situation (b) Refill due to the creation of t0

(c) Creation of t0 (d) Creation of t1

(e) Steal of t0 (f) Refill due to deferred allocation

(g) Allocation of the input buffer of t1 (h) Creation of t2

(i) Execution of t1 (j) Deferred allocation of the input buffer of t2

(k) Creation of t3 (l) De-allocation of the input buffer of t1

Figure 8.15: Illustration of the reduced memory footprint due to deferred allocation

174

Chapter 8: Deferred allocation

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic

20

40

60

80

100

Fr
ac

tio
n

of
 re

qu
es

ts
 to

 lo
ca

l m
em

or
y

[%
]

17.6

64.5

87.8
93.0

49.8

66.8

86.0
91.8

39.9

65.5

89.6
92.8

34.7

75.0

88.8
93.8

24.3

71.4

93.0 93.6

23.8

34.2
40.3 39.0

44.8

72.4
76.0 78.6

rnd
dfa
dfa+input only
dfa+input only+taws

Figure 8.16: Locality of requests to main memory on the Opteron system for deferred allocation

we introduce another approximation of the fraction of accesses to local memory called Rwloc
loc whose

definition is similar to Rappr
loc , but which assumes that all write accesses target local memory.

Figure 8.17 shows the results for the locality based on the approximation Rwloc
loc for the Opteron

system and the SGI platform. The value indicated for rnd corresponds to the estimation using
R

appr
loc , as deferred allocation is not enabled for this configuration and write accesses thus cannot

be assumed to be local. The relative error of the approximation over the locality measured with
hardware performance counters for the Opteron system is given in Figure 8.18. As in the previous
chapter, the error for blur-roberts is extremely high and the values for the approximation for this
benchmark cannot be taken into account. The error for the other benchmarks is much lower
and ranges between −25.5% and 18.5%. For deferred allocation with work-pushing and deferred
allocation with work-pushing and topology-aware work-stealing, the relative error is below 10%.

The results for the SGI system are similar to the Opteron system. Deferred allocation only
already improves the locality of memory accesses significantly for all of the benchmarks. Work-
pushing increases the locality further for all benchmarks except bitonic. The increase of topology-
aware work-stealing is lower, but never decreases locality. Except bitonic, all benchmarks reach a
value for locality based on the approximation Rwloc

loc which is close to the maximum of 100%. For
the bitonic benchmark more than three quarters of the data are accesses locally. As mentioned
above, the values of Rwloc

loc for blur-roberts should not be taken into account. Hence, we do not
provide any conclusion based on this data for blur-roberts.

To relate the results for the locality of memory accesses for deferred allocation with the results
of the previous chapter on work-pushing and topology-aware work-stealing, Figure 8.19 shows the
fraction of requests to local main memory on the Opteron platform for the work-pushing heuristics
in conjunction with topology-aware work-stealing and deferred allocation with work-pushing
and topology-aware work-stealing. A notable result is that deferred allocation with work-pushing
and topology-aware work-stealing yields approximately the same locality as the work-pushing
heuristic with the highest locality for all benchmarks for most of the benchmarks. For the bitonic
benchmark, deferred allocation even yields a significantly higher locality than all of the work-
pushing heuristics with topology-aware work-stealing. Hence, in all cases, independently from the
structure of the task graph, it is beneficial for data locality to use deferred allocation in conjunction
with work-pushing and topology-aware work-stealing.

8.4.1 Memory footprint

As discussed in Section 8.3.4, deferred allocation can reduce the memory footprint of an
application considerably. Figure 8.20 shows the maximum resident size of the dynamic single
assignment versions with default random work-stealing and different combinations of deferred
allocation, work-pushing and topology-aware work-stealing as well as for the shared memory
implementations of the benchmarks. The huge difference between the memory footprint of blur-

175

Chapter 8: Deferred allocation

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic
0

20

40

60

80

100

120

Fr
ac

tio
n

of
 lo

ca
lly

 p
la

ce
d

da
ta

 (a
pp

r.)
 [%

]

13.6

57.0

94.5
99.2

39.4

79.1

93.9
98.4

31.5

74.0

96.9 99.3

31.6

75.5

90.4
95.8

18.1

59.6

98.3 99.0

28.5

59.8

91.9
95.6

41.7

77.5 79.7 83.0

rnd dfa dfa+input only dfa+input only+taws

(a) Opteron system

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic
0

20

40

60

80

100

120

Fr
ac

tio
n

of
 lo

ca
lly

 p
la

ce
d

da
ta

 (a
pp

r.)
 [%

]

5.0

53.3

91.6
98.2

31.2

75.6

89.8
96.2

27.6

72.0

93.9
98.1

21.5

71.8

84.8

93.5

9.7

55.6

95.6 98.4

13.4

53.1

90.0 93.1

27.2

71.3 74.5
78.2

rnd dfa dfa+input only dfa+input only+taws

(b) SGI system

Figure 8.17: Approximation Rwloc
loc (and Rappr

loc for rnd) of the locality for deferred allocation

roberts on the Opteron system and the SGI system is due to the different size of the input and
output matrix on both systems. Also, the shared memory version of blur-roberts has a footprint that
is substantially higher than the dynamic single assignment versions. This is due to the use of an
auxiliary matrix for intermediate results generated by the blur filter, which ensures that elements
in the overlapping areas of blocks are not overwritten before all calculations depending on this
data have terminated.

A rule of thumb for all other benchmarks is that the dynamic single assignment implementations
either have a significantly larger footprint than the shared memory versions of the benchmarks
without deferred allocation (seidel, jacobi-2d, jacobi-3d, k-means and bitonic) or require approximately
the same amount of memory (jacobi-1d). In all cases except for jacobi-1d and blur-roberts, deferred al-
location considerably reduces the amount of memory required for execution. The short dependence
paths in blur-roberts and the structure of the task graph of jacobi-1d with few dependences lead to
less tasks that are in-flight at the same time. Hence, less input buffers are needed simultaneously
and the size of the input matrix dominates the memory footprint.

The improvement over rnd is shown in Figure 8.21. For seidel, jacobi-2d, jacobi-3d, k-means and
bitonic the reduction is close to or even exceeds 30%. The only negative impact was measured for
jacobi-1d on the Opteron system, for which deferred allocation can increase the footprint by up
to 21.9%. We did not investigate this issue in detail, but we believe that this behavior is related
to improved load balancing, causing refill operations on a higher number of memory pools. For
blur-roberts the improvement is less than 5% on both platforms.

176

Chapter 8: Deferred allocation

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic
50

0

50

100

150

Re
la

tiv
e

er
ro

r [
%

]

-22.9-11.5
7.7 6.6

-20.9

18.5
9.2 7.1

-21.0
13.1 8.2 7.0

-8.9 0.6 1.9 2.2 -25.5-16.6 5.8 5.8
19.3

75.0

128.0

145.3

-7.0
7.0 4.9 5.6

rnd
dfa
dfa+input only
dfa+input only+taws

Figure 8.18: Relative error of Rwloc
loc (and Rappr

loc for rnd) over the locality measured with hardware perfor-
mance counters for the Opteron system

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic

30

40

50

60

70

80

90

100

Fr
ac

tio
n

of
 re

qu
es

ts
 to

 lo
ca

l m
em

or
y

[%
]

66.2

91.0 92.9 93.0

61.4

91.7 92.7 91.8

64.5

92.0 93.5 92.8

59.2

89.4 90.2
93.8

84.8

92.9 94.4 93.6

39.8

33.4

39.8 39.0

60.0 61.8

72.1

78.6

input only+taws
outputonly+taws
weighted+taws
dfa+input only+taws

Figure 8.19: Comparison of the locality of requests to main memory on the Opteron system for work-pushing
and deferred allocation

8.4.2 Performance

Figure 8.22 shows the speedup of the different configurations using deferred allocation over
random work-stealing. Deferred allocation improves performance of all benchmarks without any
exception. The highest speedups are achieved for seidel with up to 3.57× on the SGI system and
2.71× on the Opteron system. The smallest speedup is the speedup of the k-means benchmark with
only 1.01× on the Opteron system and 1.29× on the SGI system. However, the speedup for the best
configurations of the other benchmarks is at least 1.38× on the Opteron system and 1.68× on the
SGI system. Hence, the improvements on data locality and the reduction of the memory footprint
by deferred allocation translate into large performance gains for memory-intensive applications
and moderate gains for cache-bound applications.

Figure 8.23 relates the performance of deferred allocation to the shared memory implementa-
tions. Except for k-means on both platforms and bitonic on the Opteron system, the dynamic single
assignment implementations with deferred allocation outperform the shared memory implementa-
tions at least by a factor of 1.15 for the best configuration. In the best case, i.e., for jacobi-1d using
deferred allocation and work-pushing on the SGI system, execution can be sped up by a factor of
4.17. A notable difference with the results for work-pushing with topology-aware work-stealing of
the previous chapter is that jacobi-1d on the Opteron system and bitonic on the SGI system now
perform better than the shared memory implementations.

177

Chapter 8: Deferred allocation

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic
0

5

10

15

M
em

or
y

fo
ot

pr
in

t [
Gi

B]

8.1

5.6
4.7 4.7

2.5 2.9 2.6
3.1

3.6
3.0

7.5

5.1 4.7 4.7

3.0

7.7

5.0 4.8 4.8
4.1

8.2

6.0 5.7 5.8

3.3

8.7 8.5 8.4 8.4

16.1

8.8

4.6 4.7 4.8

2.2

rnd
dfa
dfa+input only
dfa+input only+taws
shm

(a) Opteron system

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic
0

10

20

30

40

50

60

70

M
em

or
y

fo
ot

pr
in

t [
Gi

B]

7.6
5.5 5.0 4.9

2.7 3.9 3.1 3.3 3.5 3.2
7.7

5.3 5.0 5.0 3.2

8.8
5.6 5.4 5.4 4.3

8.5
6.3 6.1 6.1

3.5

34.2 33.4 33.4 33.5

64.4

9.3
5.1 5.1 5.2

2.4

rnd
dfa
dfa+input only
dfa+input only+taws
shm

(b) SGI system

Figure 8.20: Maximum resident size for dynamic single assignment implementations with and without
deferred allocation and the shared memory implementations

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic Average
40

20

0

20

40

60

Re
du

ct
io

n
[%

]

31.0

42.3 42.0

10.5

-6.1 -21.9

32.1
37.5 37.4 34.8 37.4 36.9

27.0
30.6 29.1

3.2 3.6 3.5

47.5 46.9 45.7

26.6 27.4 24.7

dfa
dfa+input only
dfa+input only+taws

(a) Opteron system

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic Average
0

10

20

30

40

50

Re
du

ct
io

n
[%

]

28.4

34.9 35.4

19.6

14.4
9.2

31.9
35.9 35.6 36.8 38.3 39.2

25.7
28.9 28.1

2.1 2.4 2.0

45.5 45.2 44.4

27.2 28.6 27.7

dfa
dfa+input only
dfa+input only+taws

(b) SGI system

Figure 8.21: Reduction of the maximum resident size by deferred allocation compared to rnd

178

Chapter 8: Deferred allocation

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic Geometric mean

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

ov
er

 ra
nd

om
 w

or
k-

st
ea

lin
g

1.45

2.57
2.71

1.66

2.10

2.36

1.63

2.07
2.15

1.48
1.57 1.60

1.01 1.03 1.03
1.11

1.38 1.42
1.54 1.54 1.54

1.39

1.68 1.75

dfa
dfa+input only
dfa+input only+taws

(a) Opteron system

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic Geometric mean

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

du
p

ov
er

 ra
nd

om
 w

or
k-

st
ea

lin
g

1.68

3.08

3.57

1.95

2.64
2.47

1.93

2.54
2.67

2.06
2.24

2.36

1.21 1.28 1.29

1.70

2.07 2.06 1.97 2.06
2.22

1.76

2.20 2.29

dfa
dfa+input only
dfa+input only+taws

(b) SGI system

Figure 8.22: Speedup of deferred allocation over default random work-stealing without work-pushing

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic Geometric mean

0.5

1.0

1.5

2.0

Sp
ee

du
p

ov
er

 S
HM

 w
/ i

nt
er

le
av

in
g

0.70

1.01

1.78
1.88

0.63

1.04

1.32

1.48

0.76

1.24

1.57
1.63

1.02

1.51
1.60 1.63

0.90 0.91 0.93 0.92

1.13
1.25

1.56 1.60

0.52

0.80 0.80 0.80 0.78

1.09

1.321.36

rnd
dfa

dfa+input only
dfa+input only+taws

(a) Opteron system

seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic Geometric mean
0

1

2

3

4

Sp
ee

du
p

ov
er

 S
HM

 w
/ i

nt
er

le
av

in
g

0.95

1.60

2.94

3.41

1.58

3.08

4.17
3.91

0.69

1.34

1.76 1.86

1.09

2.24
2.44

2.57

0.61 0.73 0.78 0.79
1.12

1.90

2.322.30

0.52

1.02 1.07 1.15
0.88

1.55

1.932.01

rnd
dfa

dfa+input only
dfa+input only+taws

(b) SGI system

Figure 8.23: Speedup of deferred allocation over the shared memory implementations

179

Chapter 8: Deferred allocation

8.5 Ongoing work: reduction of the memory footprint with the
inout_reuse clause

A major drawback of dynamic single assignment is the possibly larger working set of each
task compared to shared memory solutions with in-place updates even with deferred allocation.
This has two consequences. The first consequence is a possibly negative impact on the memory
footprint of the application, as shown in the previous section. Second, as data of both input and
output buffers occupies caches, tasks using dynamic single assignment have a higher footprint in
the hierarchy of caches, resulting in a higher number of cache misses. In this section, we present
a new clause that we have implemented for OpenStream, called inout_reuse. This clause allows
tasks that read data from an input buffer, process the data and write the results to an output buffer
of the same size to be rewritten such that they only use a single buffer with in-place updates. As
this is ongoing work, we only present the principles of this solution as a perspective, but do not
provide conclusive results. The syntax of the inout_reuse clause is the following:

1 inout_reuse(stream_expr >> view_expr >> stream_expr)

The first stream expression defines from which stream the elements are read and the second stream
expression defines to which stream the elements are written after the in-place updates in the
task body. To illustrate this concept, consider the following task that reads data from a stream
s1, calculates the square root of each element and writes the result to another stream s2. Using
dynamic single assignment with an input and an output clause, this task would be specified as
follows:

Listing 8.3: Example of a task with equal-sized input and output views

1 float in_view[horizon];
2 float out_view[horizon];
3

4 #pragma omp task input(s1 >> in_view[horizon]) \
5 output(s2 << out_view[horizon])
6 {
7 for(int i = 0; i < horizon; i++)
8 out_view[i] = sqrtf(in_view[i]);
9 }

As the size of the input and output view is the same and as the data between these two views is
directly related, the task can be rewritten using the inout_reuse clause as:

Listing 8.4: Example of a task using the inout_reuse clause

1 float rview[horizon];
2

3 #pragma omp task input(s1 >> rview[horizon] >> s2)
4 {
5 for(int i = 0; i < horizon; i++)
6 rview[i] = sqrtf(rview[i]);
7 }

The memory footprint of the task is half of the memory footprint of the implementation using
one input and one output clause. As an inout_reuse clause always references two streams, a
minimal task graph of an application using this clause must have at least three tasks, as shown in
Figure 8.24a. The first task writes the initial data to the stream of the first stream reference in the
inout_reuse clause, the second task uses the inout_reuse and the third task reads from the stream
corresponding to the second reference in the inout_reuse clause. A task using the inout_reuse
clause can be the producer or the consumer of another task using this clause. The only restriction
that applies to this construct is that the views of the producer and consumer must have exactly
the same size. This allows the run-time system to use a single input buffer that only needs to be
handed from the producer to the consumer.

Figure 8.24b shows a task graph with two consecutive tasks using the inout_reuse clause.
Between t1 and t2 the same input buffer can be reused. Figure 8.25a to Figure 8.25l illustrate the
steps at the execution of the application with this task graph. Before we explain each of these

180

Chapter 8: Deferred allocation

output inputinout_reuse

(a) Minimal example

output inputinout_reuse inout_reuse

(b) Two subsequent tasks using the inout_reuse clause

Figure 8.24: Examples of a task graphs with tasks using the inout_reuse clause

steps in detail, we first provide an overview of additional data structures and additional fields
representing views and frames. For simplicity, the figures show only new and existing fields
relevant for the illustration of the inout_reuse clause.

To keep the changes for the code carrying out dependence resolution in resolve_dependences
as little as possible, we have chosen to implement inout_reuse views using two views, one input
view and one output view. This allows the run-time to match input and output views with in-
out_reuse views the same way as it matches input views with output views. We refer to the input
view of an inout_reuse view as the reuse input view and to the output view as the reuse output view.
Among the new fields representing a view is a field called reuse_view, pointing to the reuse
input view of the producer view if this is an inout_reuse view and refctr, indicating for a reuse
input view by how many views its input buffer is referenced, including the view itself. Frames are
also provided with a reference counter, as views embedded in the frame can be referenced beyond
the lifetime of the task associated to the frame.

In the following illustration of the steps at execution time, we assume that deferred allocation is
enabled. Figure 8.25a shows the creation of the task t0. As the output view has not been matched
with an input view yet, cons_view and data are initialized with NULL and since the task does
not have any predecessors, reuse_view also receives NULL. The reference counters for the view
and the frame are set to one.

The creation of t1 in Figure 8.25b causes the output view of t0 to be matched with the reuse
input view of the inout_reuse view of t1. No special treatment is required and the cons_view
pointer receives the address of the reuse input view, just as if the reuse input view were an ordinary
input view not associated to an inout_reuse clause. As t0 does not have any inout_reuse views and
as the consumers of t1 have not yet been created, all pointers of the views of t1 are initialized with
NULL and the reference counters are set to one.

Figure 8.25c shows the matching of the two inout_reuse views of t1 and t2 after the creation of
t2. The reuse input view of t2 references the reuse input view of t1 by assigning the address of the
reuse input view of t1 to reuse_view. As the reuse input view of t1 is now referenced by t1 and
t2, the reference counter is increased to the value two. The same applies to the reference counter of
the frame of t1.

The creation of t3 and the matching of its output view is shown in Figure 8.25d. Similar to
t2, the field reuse_view receives the address of the reuse input view of the predecessor t2 and
the reference counters of t2 are updated accordingly. At the beginning of the execution of t1 in
Figure 8.25e, deferred allocation is triggered and the input buffer of the reuse input view of t1 is
allocated, which results in an update of the data pointers of the output view of t0 and the reuse
input view of t1. Upon termination of t0 in Figure 8.25f, the reference counter of its frame is
decremented and reaches zero, indicating that the frame is no longer being referenced. Note that
the reference counter of the output view is not updated. This is due to the convention that input
buffers can only be owned by input views. Reference counters of output views are thus never used
and do not need to be updated. The frame associated to t0 is freed in Figure 8.25g.

Figure 8.25h and Figure 8.25i show what happens at termination of t1. In a first step, the
data pointer of the reuse input view of t2 receives the address of the input buffer used by t1
(Figure 8.25h). Afterwards, the data pointer of the reuse input view of t1 is set to NULL and its
reference counter as well as the reference counter of the frame are decremented (Figure 8.25i). This
transfers the ownership for the input buffer from t1 to t2

181

Chapter 8: Deferred allocation

ou
t_

vi
ew

data

cons_view
reuse_view

refctr 1

refctr 1

(a) Creation of t0

data

cons_view
reuse_view

refctr 1

in
_v

ie
w

refctr 1

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

ou
t_

vi
ew

data

cons_view
reuse_view

refctr 1

refctr 1

(b) Creation and matching of t1

data

cons_view
reuse_view

refctr 2

in
_v

ie
w

refctr 2

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

data

cons_view
reuse_view

refctr 1

in
_v

ie
w

refctr 1

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

ou
t_

vi
ew

data

cons_view
reuse_view

refctr 1

refctr 1

(c) Creation and matching of t2

ou
t_

vi
ew

data

cons_view
reuse_view

refctr 1

refctr 1

data

cons_view
reuse_view

refctr 2

in
_v

ie
w

refctr 2

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

data

cons_view
reuse_view

refctr 2

in
_v

ie
w

refctr 2

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

ou
t_

vi
ew

data

cons_view
reuse_view

refctr 1

refctr 1

(d) Creation and matching of t3

data

cons_view
reuse_view

refctr 2

in
_v

ie
w

refctr 2

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

data

cons_view
reuse_view

refctr 2

in
_v

ie
w

refctr 2

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

ou
t_

vi
ew

data

cons_view
reuse_view

refctr 1

refctr 1

ou
t_

vi
ew

data

cons_view
reuse_view

refctr 1

refctr 1

(e) Start of the execution of t0, allocation of the input buffer

data

cons_view
reuse_view

refctr 2

in
_v

ie
w

refctr 2

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

data

cons_view
reuse_view

refctr 2

in
_v

ie
w

refctr 2

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

ou
t_

vi
ew

data

cons_view
reuse_view

refctr 1

refctr 0

ou
t_

vi
ew

data

cons_view
reuse_view

refctr 1

refctr 1

(f) Termination of t0

Figure 8.25: Steps during execution of an application using the inout_reuse clause

182

Chapter 8: Deferred allocation

data

cons_view
reuse_view

refctr 2

in
_v

ie
w

refctr 2

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

data

cons_view
reuse_view

refctr 2

in
_v

ie
w

refctr 2

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

ou
t_

vi
ew

data

cons_view
reuse_view

refctr 1

refctr 1

(g) De-allocation of t0

data

cons_view
reuse_view

refctr 2

in
_v

ie
w

refctr 2

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

data

cons_view
reuse_view

refctr 2

in
_v

ie
w

refctr 2

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

ou
t_

vi
ew

data

cons_view
reuse_view

refctr 1

refctr 1

(h) Termination of t1

data

cons_view
reuse_view

refctr 1

in
_v

ie
w

refctr 1

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

data

cons_view
reuse_view

refctr 2

in
_v

ie
w

refctr 2

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

ou
t_

vi
ew

data

cons_view
reuse_view

refctr 1

refctr 1

(i) Start of the execution of t2

data

cons_view
reuse_view

refctr 0

in
_v

ie
w

refctr 0

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

data

cons_view
reuse_view

refctr 2

in
_v

ie
w

refctr 2

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

ou
t_

vi
ew

data

cons_view
reuse_view

refctr 1

refctr 1

(j) Termination of t2

Figure 8.25: Steps during execution of an application using the inout_reuse clause (continued)

183

Chapter 8: Deferred allocation

data

cons_view
reuse_view

refctr 0

in
_v

ie
w

refctr 0

data

cons_view
reuse_view

refctr 1ou
t_

vi
ew

ou
t_

vi
ew

data

cons_view
reuse_view

refctr 1

refctr 1

(k) De-allocation of t1 and update of reference
counters

ou
t_

vi
ew

data

cons_view
reuse_view

refctr 1

refctr 1

(l) De-allocation of t2

Figure 8.25: Steps during execution of an application using the inout_reuse clause (continued)

Transfer
ownership

(a) Transfer from ti to ti+1

Transfer
ownership

(b) Transfer from ti+1 to ti+2

Figure 8.26: Transfer of ownership resulting in a minimal memory footprint of dependent tasks

Upon termination of t2 in Figure 8.25j, the reference counters of t2 are decremented again and
the frame of t2 becomes ready for de-allocation freed 5. To pass the contents of the input buffer to
t3 the data pointer of t3 is set to the corresponding address. Figure 8.25k shows the last part of
the termination of t2. Similar to the end of t1 the data pointer of the reuse input view of t2 is set to
NULL, transferring the ownership of the input buffer to t3. As neither the reuse input view nor the
frame of t2 are used anymore, the respective reference counters are decremented.

In the last step, shown in Figure 8.25l, the frame of t2 is freed and t3 becomes ready for execution.
Nothing in the data structures of t3 indicates that the input buffer has been transferred using
inout_reuse clauses. When the reference counters of the input view of t3 is decremented, it reaches
zero and as the data pointer has a value different from NULL, the input buffer will be freed.

As can be seen in the example, only a single input buffer is allocated for all of the tasks. Hence,
the minimal number of input buffers for a chain of dependent tasks is reduced from two buffers
for deferred allocation without the inout_reuse clause (as discussed in Section 8.3.4) to a single
input buffer. Figure 8.26 illustrates this property on an example with four tasks ti, ti+1, ti+2 and
ti+3. In Figure 8.26a, the ownership for the input buffer allocated at the very beginning of the
chain is transferred from ti to ti+1. During its execution, ti+1 reads the data written to the input
buffer by ti and overwrites the contents with the results of its own calculation. In the next step,
shown in Figure 8.26b, this data is passed to ti+2, again by transferring the ownership of the input
buffer. This pattern continues for all remaining tasks on the chain until the destruction of the input
buffer at the end of the chain after the execution of a task with an ordinary input view. However,
a drawback of this approach is that all tasks reusing a buffer target the same memory controller
during their execution. For example, if ti and ti+1 execute on different NUMA nodes, one of them
accesses remote memory. However, in contrast to a static placement, the run-time can decide to
migrate the data of a buffer from one node to another when the ownership for data is transferred
between two views. For example, when ti finishes, the data pointer of the reuse input view of ti+1

could be initialized with the address of a new buffer on an appropriate node. The contents of the
buffer used by ti+1 would simply need to be copied from the previous buffer to the new buffer
and the reference counters of ti+1 would need to be updated, such that the old buffer would be

5. Technically this could already happen at the beginning of the execution of t2. However, in earlier implementations
the transfer of ownership was handled differently, which required the de-allocation to be delayed.

184

Chapter 8: Deferred allocation

Copy

(a) Detection that a local copy is needed
Free

(b) De-allocation of the source buffer

Figure 8.27: Copying the contents of an inout_reuse view when changing nodes

destroyed properly. This is shown in Figure 8.27, where ti is executed by a core associated to the
node na and ti+1 is executed by a core associated to nb. Before ti is executed, the run-time allocates
a new input buffer on nb, copies the contents of the old input buffer to the new one, sets the data
pointer of the reuse input view of ti+1 accordingly and frees the old input buffer.

The inout_reuse clause can also be used to pass read-only data or data that is modified infre-
quently from one task to another. For example, the read-only point data passed between tasks that
calculate the distance to cluster centers in the k-means benchmark does not have to be copied from
an input view to an output view by using the inout_reuse clause.

We have integrated the support for inout_reuse clauses into the OpenStream compiler and run-
time as well as different schemes for the allocation of buffers during transfer of ownership between
two tasks on different nodes. Furthermore, the inout_reuse clause is an incremental extension and
applications using the clause can take advantage of all of the optimizations presented in previous
chapters. However, the analysis of the data locality and performance of these solutions is still in an
early phase and will be continued in future research following this thesis.

8.6 Summary
In this chapter, we introduced deferred allocation, which delays the allocation and thus the

placement of input buffers to the latest possible moment. We showed that this technique mitigates
the negative effects on data locality and load balancing of immediate allocation related to the
structure of the control program, work-stealing events by remote workers and the creation of
initial tasks. As a side effect, deferred allocation can reduce the number of input buffers that are
used simultaneously, which results in a reduction of the memory footprint of the application. We
showed that deferred allocation can be combined with the input only heuristic for work-pushing as
well as the mechanism for topology-aware work-stealing presented in the previous chapter.

The experimental evaluation shows that deferred allocation improves the locality of accesses
to main memory significantly compared to default random work-stealing with immediate allo-
cation. For a large set of benchmarks, deferred allocation in conjunction with work-pushing and
topology-aware work-stealing almost reaches maximum locality. The fraction of local accesses for
a benchmark with balanced dependences can be improved to more than 75% of local accesses. The
memory footprint is decreased by as much as 47.5% and is only increased for a single benchmark
on the Opteron platform. Compared to the default random work-stealing technique and immediate
allocation, deferred allocation improves the performance of all benchmarks and yields speedups
of up to 3.57× when used in conjunction with the other optimizations. In addition, deferred
allocation allows the majority of the dynamic single assignment implementations to outperform
the shared memory implementation significantly.

All of the optimizations presented in this chapter and the previous chapter are implemented
at the run-time level. They rely on high-level programming information naturally available in
task-parallel programs with point-to-point data dependences at execution time and do not require
program or input set profiling. Once an application has been implemented using dynamic single
assignment on stream elements, the run-time is able to automatically improve its data locality
and thus increases performance in many cases, independently from the actual topology of the
hardware. Especially on larger systems, dynamic single assignments versions can be significantly
faster than shared memory implementations. However, the shared memory implementations in

185

Chapter 8: Deferred allocation

the comparison use interleaved allocation with excellent load balancing across memory controllers,
but with poor average data locality. For an entirely fair comparison, it would be necessary to use
shared memory versions with explicit, manual data placement adapted to the target platform.
Although these versions might yield higher performance, they require substantial engineering
efforts and become dependent on the target machine.

The improvements achieved through data-aware scheduling and deferred allocation of the
previous chapters focused on the data locality of applications with point-to-point dependences,
where data produced by a task is read by a single consumer. In the next chapter, we focus on the
performance of broadcasts, where the output data of a single producer needs to be transferred to
multiple consumers.

186

9 Optimizing broadcasts

The previous chapters focused on point-to-point communication, where elements of a stream
are written and read by exactly one task. We showed that it is possible to improve the placement
of tasks and data dynamically at execution time to increase the locality of memory accesses by
exploiting these dependences, leading to higher performance of memory-intensive applications.
In this chapter, we focus on applications with broadcasts, in which the results of a producer are
read by more than a single reader. We show that deferred allocation, presented in the previous
chapter, improves performance of such applications, but that the benefits are limited due to the
high memory footprint caused by the broadcast mechanism presented in Section 3.3. We then
introduce broadcast tables, an optimization for broadcasts that reduces the memory footprint and
increases performance. The experimental evaluation is conducted on the cholesky benchmark, which
extensively uses broadcasts throughout its entire execution. We show that using broadcast tables,
OpenStream is able to match the performance of state-of-the-art implementations of Cholesky
Factorization for many-core systems. Data locality and load balancing across memory controllers
are addressed at the end of the chapter, generalizing the concept of broadcast tables for future
research.

9.1 Memory footprint and execution time of broadcasts
To motivate the performance issues related to broadcasts, recall the principles of broadcasts in

the execution model of OpenStream. In this model, data that is read by multiple readers through
peek views is broadcast by the producer of the data at the end of its execution by copying the
data to each of the readers’ input buffers. The order of the copies depends on the order of the
matching of the readers’ peek views on the stream used for the broadcast. Figure 9.1a illustrates
these concepts on a broadcast with one producer tp and n readers t0c to tn−1c . Assume that the order
of task creation of the readers corresponds to their indexes, i.e., the first reader that is created is
t0c , followed by t1c and so on. According to the matching mechanism described in Section 3.4.3,
all readers are added to a list of siblings reading the same stream elements upon their respective
calls to resolve_dependences, which immediately follows task creation. The tick operation on
the stream that is used for the broadcast must take place after the creation of all readers and after
the creation of the producer. This causes the producer tp to be matched with the first reader t0c in
the list of siblings. The synchronization counter of the producer is decreased and the producer
is activated, unless it has other unmet dependences. During the execution of tp, the task writes
its output data to the input buffer of t0c , just as if there was a simple point-to-point dependence

Chapter 9: Optimizing broadcasts

(a) Task graph

...
next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

(b) Multiple copies at the end of the broadcast

Figure 9.1: Broadcast to n readers with multiple copies

between tp and t0c . The actual broadcast takes place at the end of the execution of tp and consists in
copying the input data of t0c to the input buffers of the remaining tasks t1c to tn−1c . In the worst case
with respect to the memory footprint, there are n copies stored in n buffers at completion of the
broadcast, as shown in Figure 9.1b.

Deferred allocation, presented in the previous chapter, can help to reduce the footprint, but
does not guarantee a lower memory footprint under all circumstances. Figure 9.2 illustrates the
events leading to the minimal footprint for a broadcast. The situation at the beginning of the
broadcast is given in Figure 9.2a, where the output data of the producer is only available in the
input buffer of the first reader t0c . Due to the use of deferred allocation, neither of the input buffers
of the remaining readers t1c to tn−1c has been allocated at task creation. Each of these buffers will be
allocated during the traversal of the chain of readers, when the data of the first reader needs to
be copied to the private input buffer of the corresponding reader. The first allocation is shown in
Figure 9.2b, where the data pointer of the peek view of t1c is initialized with the address of the newly
allocated buffer. In the next step, shown in Figure 9.2c, the data of the broadcast is copied from the
input buffer of t0c to the input buffer of t1c . Note that after this operation, t1c is ready for execution
as all of its input data is available and unlike t0c no other task depends on the existence of its buffer.
However, due to the use of the single entry software cache, presented in Chapter 3.4.1, the task
is protected from steals and remains only accessible to the worker that activated the task, which
is the worker executing the producer of the broadcast. Figure 9.2d and 9.2e show the allocation
and the initialization of the input buffer of the next task t2c . The activation of t2c after these events
causes t1c to be transferred from the single entry software cache to the work-queue of the worker
executing the producer and thus exposes t1c to steals. For a minimal memory footprint, this task
must be stolen and be executed by another worker and its input buffer must be freed before the
producer reaches t3c in the chain of readers. Only in this case the buffer of t1c can be reused for t3c ,
as shown in Figure 9.2i. A minimal footprint also requires that this pattern of copying, stealing,
freeing and reusing continues for the remaining readers until the end of the broadcast.

As shown above, in the best case for the memory footprint only three input buffers are needed:
the input buffer of t0c from which data is copied and the input buffer of two of the remaining
readers (the first of the remaining readers is the one in the single entry software cache and the
second one is the reader whose input buffer is being written). However, this requires that each
reader tic terminates before the input buffer of ti+2

c is allocated, which in turn requires that another
worker steals and executes tic in between. It is highly unlikely that this timing of events occurs
during execution and it is more likely that the input buffers of at least a few of the readers are
allocated before the first reuse of an input buffer can take place. How many input buffers co-exist
also depends on the amount of parallelism of the application and load balancing across workers.

188

Chapter 9: Optimizing broadcasts

...
next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

(a) After the execution of the task body of tp

...
next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

allocate
(b) Allocation of the input buffer of t1c

...
next
peek_view

data ...
next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

copy

(c) Copy by tp to the input buffer of t1c

...
next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

allocate
(d) Allocation of the input buffer of t2c

...
next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

copy

(e) Copy by tp to the input buffer of t2c

Figure 9.2: Broadcast with deferred allocation

189

Chapter 9: Optimizing broadcasts

...
next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

next
peek_view

data ...

reuse
(i) Allocation of the input buffer of t3c , reusing the buffer of t2c

Figure 9.2: Broadcast with deferred allocation (continued)

Task execution Task steal
Time

...

...

BroadcastBroadcast

Figure 9.3: Timing related to copies during a broadcast

If many workers are idle during the broadcast, readers that are ready for execution are likely to
be stolen quickly and the time to the first reuse of a buffer is low. On the contrary, if all workers
are busy executing other tasks, the worker executing the producer of the broadcast accumulates
readers that are ready for execution in its work queue. As these tasks are not executed before the
worker finishes the broadcast, their resources cannot be freed and the number of co-existing buffers
is high. As we will show in the experimental evaluation of this section, the footprint using deferred
allocation ranges between the minimal footprint and the footprint of the default implementation
for broadcasts that allocates all buffers of the readers at their creation.

Another issue arising from the default mechanism for broadcasts is related to the timing of the
copies shown in Figure 9.3. Let texe be the time that is necessary for the producer to carry out all
instructions of its task body, including the writes to the input buffer of the first reader, and let tcpy
be the time that is needed to copy the contents of the input buffer of t0c to the input buffer of one
of the remaining readers 1. As the input buffer of the first reader acts as the source for all copy
operations, t0c cannot become ready until all copies are done. Hence, t0c becomes ready only upon
termination of tp. The other readers tic are unblocked earliest at texe +

∑i
j=1 tcpy = texe + i · tcpy

after the start of tp. Note that the second reader t1c becomes ready after the first copy, but cannot be
stolen by other workers as it is first transferred to the single entry software cache. Therefore, the
arrow indicating the steal of t1c in Figure 9.3 is located at 2 · tcpy after the beginning of the broadcast.
The average waiting time tw,avg of a reader to become ready for execution can be calculated as

1. In reality this time is not constant and depends on many factors related to the hardware topology (e.g., the distance
between the writer and the targeted buffer) and on dynamic effects, such as the contention on the memory controllers
involved in the transfer. However, for simplicity we assume that tcpy is constant for all copies of the broadcast.

190

Chapter 9: Optimizing broadcasts

...peek_view
next
peek_view

bctable

...

peek_view peek_viewpeek_view

refcount
broadcast_table

data

data

next
bctable

...

data

next
bctable

...

data

next
bctable

...

data

next
bctable

...

data

Figure 9.4: Sharing of a single input buffer in a broadcast using a broadcast table

follows:

tw,avg =
1

n

(
(n− 1) · tcpy︸ ︷︷ ︸

First reader

+

n−1∑
i=1

i · tcpy︸ ︷︷ ︸
Remaining readers

)

=
tcpy

n

(
(n− 1) +

n−1∑
i=1

i

)

=
tcpy

n

(
(n− 1) +

n · (n− 1)

2

)
=
tcpy

n
· (n+ 2)(n− 1)

2

=
tcpy

n
· n

2 + n− 2

2

=
1

2
tcpy ·

(
n+ 1− 2

n

)
Hence, the average waiting time grows linearly with the number of readers involved in a broadcast
and the more readers are involved in the broadcast the longer it takes for each task on average to
become ready for execution. In the next section, we will show how the memory footprint as well
as the average waiting time can be reduced considerably.

9.2 Reducing the memory footprint and execution time
As peek views are a special form of input views with a burst of zero, they do not allow the

data that is available through the view to be modified by the task owning the view. Hence, all
values that are broadcast from a producer to its readers are guaranteed to remain constant after
termination of the producer. An individual copy of the data for each reader is thus not required to
preserve the semantics of an OpenStream program. In addition, sharing a single buffer among all
readers does not only reduce the memory footprint considerably, but also decreases the average
time from the termination of the producer to the activation of a reader by orders of magnitude, as
shown below. However, as described in Section 4.3, an input buffer is used only by a single task
and freed upon its termination. Sharing a buffer among multiple tasks thus requires a protection
mechanism that prevents the buffer from being freed until all of the readers of the broadcast have
terminated.

191

Chapter 9: Optimizing broadcasts

Task execution Task steal
Time

... ...

BB

Figure 9.5: Timing of a broadcast when using a broadcast table

Figure 9.4 shows the data structures involved in a broadcast with a single input buffer shared
by all readers. The central data structure is called broadcast table and allows the run-time to
keep track of references to the shared input buffer. The broadcast table is allocated at the beginning
of the broadcast upon termination of the producer and its data pointer is initialized with the
address of the input buffer of the first reader t0c . In addition to the data pointer, each input view is
also provided with a pointer to the broadcast table. During the broadcast, these pointers are set
to the address of the broadcast table, which allows each reader to locate the shared input buffer
and to update its data pointer when it becomes ready for execution. After the broadcast and when
all readers are ready for execution, all data pointers of the readers’ input views point to a unique
input buffer, as illustrated by the figure 2. The reference counter refcount holds the number of
tasks currently using the buffer. At the beginning of the broadcast, this counter is initialized with
the number of readers and is successively decreased with each reader that terminates afterwards.
Similar to the synchronization counter of tasks, it is updated using an atomic decrement each
time a reader finishes execution. When the counter reaches zero, the input buffer referenced
by the broadcast table as well as the broadcast table itself are freed. To be able to carry out the
decrement on the correct broadcast table, the address of the broadcast table must be known when
a task terminates. Therefore, each of the peek views is provided with an additional pointer named
bctable, which points to the broadcast table used by the view.

Obviously, the memory footprint using broadcast tables does not grow linearly anymore as in
the default implementation, since the amount of memory per broadcast is constant for any number
of readers. The number of buffers that can be saved compared to the default broadcast mechanism
depends on the timing of allocations, executions and reuse of buffers with this mechanism, as
shown in the analysis for the minimal number of buffers in the last section. The value ranges
from a reduction by two buffers if the default broadcast mechanism yielded the minimum size of
buffers, to n− 1 in the worst case scenario for the default broadcast mechanism.

As far as the average waiting time is concerned, it still depends on the number of readers, but is
orders of magnitude smaller than before. Figure 9.5 illustrates the timing of a broadcast based on a
broadcast table. At the end of the execution of the producer, the pointer to the broadcast table of
all readers must be initialized. If the time that is required to initialize a pointer is tsetptr, the entire
broadcast can thus be carried out in n · tsetptr. Depending on the size of the data to be broadcast,
setting a pointer is usually orders of magnitude faster than copying the data, such that the entire
broadcast is orders of magnitude faster than without broadcast tables.

Reducing the waiting time has also a positive effect on the critical path of an applicaiton. In
the worst case without broadcast tables, a task on the critical path is the last reader in the chain
of siblings and becomes ready after (n− 1) · tcpy. By using broadcast tables, this time is reduced
to n · tsetptr and the task on the critical path becomes ready almost instantaneously. In summary,

2. As a reader tic might execute before another reader tjc with j > i becomes ready, it is possible that there are less than
n references to the broadcast table at the end of the broadcast.

192

Chapter 9: Optimizing broadcasts

...

...

BlockBlock

(a) Without padding

...

...

BlockBlock

PaddingPadding

(b) With padding

Figure 9.6: Cholesky: improved layout of data in shared memory

broadcast tables increase performance by:

– reducing the time spent on copying data from the first reader of the broadcast to the individ-
ual input buffers of the remaining reader. This reduces the average and worst-case waiting
time, unblocking tasks including those on the critical path almost instantaneously.

– reducing the number of input buffers that is necessary to store the input data of all reader,
resulting in a lower memory footprint and less time spent on logical and physical allocation
of buffers.

In the next section, we compare the performance and the memory footprint of the default broadcast
mechanism with broadcast tables on the cholesky benchmark, a broadcast-intensive linear algebra
kernel carrying out Cholesky Factorization.

9.3 Experimental evaluation
To evaluate the impact of broadcast tables on the memory footprint and on performance, we

measured the execution time and the footprint of the cholesky benchmark, described in Section 6.1.5.
One of the key characteristics of this benchmark is that it makes extensive use of broadcasts to a
large number of readers. In a second evaluation, we compare the OpenStream implementation
to two state-of-the-art implementations of the Cholesky Factorization, PLASMA [60] and an
OpenMP implementation provided by Intel’s MATH KERNEL LIBRARY [2]. Before we discuss the
experimental results, we first describe the changes that we have applied to the layout of the matrix
to be factorized in main memory, in order to improve the fraction of requests to caches that result
in cache hits.

9.3.1 Changes of the data layout improving cache hit rates

The elements of a two-dimensional N × N matrix in shared memory are stored linearly at
consecutive addresses ranging from a base address a0 to aN2−1 with ai+1 = ai + Se, where Se is
the size in bytes of a single element of the matrix (e.g., 8 bytes for a double precision floating point
value). To improve the cache hit rate, the matrix is processed in blocks of SB × SB elements that
can be held in the cache simultaneously. The elements of each row of such a block are stored at
consecutive addresses, but the distance between two consecutive rows is greater than zero if the
matrix is composed of more than one block, i.e., if SB 6= N . Figure 9.6a illustrates the distance
between the first element of the first row of a block to the first element of the second row. If this
distance is a multiple of the cache size SC , the elements of each row are mapped to the same index
in the cache, as indicated by the striped pattern in the figure. Depending on the associativity of the
cache, this effectively limits the space that is available for the elements of a block and can result
in a high miss rate. For example, if the associativity is four, then only four rows of a block can be
held in the cache simultaneously, although the capacity of the cache might be orders of magnitude
higher. As the elements of a block are read multiple times, this leads to an unnecessarily high
number of cache misses.

193

Chapter 9: Optimizing broadcasts

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

10-4

10-3

10-2

10-1

100

101

102

103
M

em
or

y
fo

ot
pr

in
t [

Gi
B]

default
dfa
dfa+bt
SHM (ideal)

(a) Opteron platform

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

10-4

10-3

10-2

10-1

100

101

102

103

M
em

or
y

fo
ot

pr
in

t [
Gi

B]

default
dfa
dfa+bt
SHM (ideal)

(b) SGI system

Figure 9.7: Memory footprint of cholesky with and without broadcast tables. The configurations are
the default broadcast without deferred allocation (default), with deferred allocation (dfa) and with deferred
allocation in conjunction with broadcast tables (dfa+bt).

A simple way to deal with this situation is to add padding elements to each row of the matrix,
which increases the distance between the rows of a block. This is shown in Figure 9.6b, in which
each row of the matrix is padded with Spad bytes, resulting in a distance of n·SC+Spad between two
rows of a matrix. Ideally, Spad is equal to the size of a row of the block, such that two consecutive
rows of a block are mapped to consecutive indexes of the cache. In all experiments discussed below,
we used a padding of 2048 bytes, which corresponds to the size of a row of a block of SB = 256
double precision floating point elements, independently from the size of the matrix, as defined in
Section 6.4.

As the padding is beneficial to all operations on matrices in shared memory, we have applied
the same padding to the input matrix of the cholesky benchmark using dynamic single assignment.
Most of the time, this benchmark operates on blocks stored in streams, representing contiguous
regions of memory that do not induce the problems described above. However, initial data is read
from the input matrix in shared memory, such that the padding is beneficial to tasks processing
input data and writing the results to streams.

9.3.2 Impact on the memory footprint and performance

To evaluate the impact of deferred allocation and broadcasts tables on the memory footprint
and on the execution time, we have executed the cholesky benchmark using three configurations of
the run-time. The first configuration, named default, uses neither deferred allocation nor broadcast
tables, but applies work-pushing using the weighted heuristic and topology-aware work-stealing,
as described in Section 7.2 and 7.3. The second configuration, labeled dfa, applies work-pushing
with the input only heuristic, topology-aware work-stealing and deferred allocation. The last
configuration, labeled dfa+bt, finally applies all optimizations at the same time, i.e., work-pushing
using the input only heuristic, deferred allocation, topology-aware work-stealing and broadcast
tables.

Figure 9.7 shows the memory footprint in GiB of the benchmark executing on the Opteron
system and on the SGI platform, presented in Section 6.3, using the three configurations above
for a matrix size ranging from 28 × 28 to 214 × 214 and 215 × 215 double precision floating point
elements, respectively. Each point on the curves represents the median value for a total of 50
runs using all 64 cores on the Opteron platform and all of the 192 cores of the SGI system. Error
bars indicate the standard deviation. The lower bound for the memory footprint of an algorithm
that performs Cholesky Factorization is achieved if a single global matrix used in shared memory
with in-place updates, in which case the memory footprint is equal to the size of the matrix. To
illustrate the overhead of the above configurations compared to the lower bound, the figure also

194

Chapter 9: Optimizing broadcasts

plots the size of the matrix, indicated by the line labeled SHM (ideal). The dashed lines on the
graphs indicate the total size of the main memory for each system. To highlight the differences for
both small and large matrices, the axes of the graph use a logarithmic scale. The reason for the
smaller maximum size of the matrix on the Opteron system is that the unoptimized version swaps
out memory pages to the hard disk for matrices bigger than 214 × 214. Swapping may also occur
for matrices of 214 × 214 on this system, but only affects a small subset of the data.

For small matrices of up to 210 × 210 elements, the three configurations yield approximately
the same memory footprint. This is primarily due to the fact that the number of blocks is small,
such that the number of readers per broadcast is also small. Figure 9.8 illustrates this property by
plotting the number of broadcasts and the total number of peek views of the entire application. As
can be seen in the graph, both the number of broadcasts and the number of peek views or readers
increase with the size of the matrix. As the number of tasks that rely on a block increases with the
number of blocks of the matrix, the gap between the two curves is small for smaller matrices and
widens for bigger matrices. In other words, for larger matrices there are more broadcasts and each
broadcast has more readers. In addition, Figure 9.7 shows that the difference between the actual
footprint of the application and the ideal footprint decreases for larger matrices. The reason for
this behavior is that the footprints in the graph represent the overall footprints of the application,
including the input matrix in shared memory, all auxiliary data structures, such as data structures
that represent workers, streams, frames containing only metadata as well as the stack segments for
each worker. As most of this overhead is constant, the relative overhead thus becomes smaller for
bigger matrices.

On both systems, deferred allocation and broadcast tables reduce the memory footprint of large
matrices significantly. For the largest matrix on the Opteron system, these optimizations reduce the
memory footprint by a factor of approximately 15, from more than 62GiB to approximately 6GiB
(dfa) and less than 4.2GiB (dfa+bt). For the largest matrix on the SGI platform, the reduction is even
higher: the initial footprint for the default broadcast algorithm without deferred allocation of more
than 520GiB is reduced to less than 26GiB (dfa) and about 17GiB (dfa+bt), which corresponds to
a factor of 20 and more than 30. Hence, both the use of deferred allocation and broadcast tables
result in huge improvements on the memory footprint of the application. The largest difference
represents more than one order of magnitude. Gains for bigger matrices are expected to be even
higher.

Figure 9.9 shows the total number of allocations of 512KiB-blocks, corresponding to the size of
a block of the matrix, from memory pools during the execution of the benchmark. The number of
allocations for the default broadcast mechanism and the one for deferred allocation are identical.
This is due to the fact that deferred allocation favors the reuse of buffers, but still allocates one
buffer for each peek view. In contrast to this, broadcast tables reduce the number of allocations
significantly. Figure 9.10 takes into account the reuse of buffers and presents the total number
of refill operations for 512KiB blocks. While the default mechanism yields the least reuse, both
deferred allocation and broadcast tables reduce the number of refills significantly.

A similar conclusion as for the memory footprint can be drawn from Figure 9.11, showing
the wall clock execution time for the three configurations, i.e., the default broadcast mechanism,
deferred allocation and deferred allocation in conjunction with broadcast tables. However, the gap
between the configurations appears only for matrices with 214 × 214 elements and more. For a
215×215 matrix processed on the SGI platform, execution with the default configuration terminates
after about 80 s. Deferred allocation reduces the execution time to about 10 s and the configuration
using broadcast tables finishes in less than 7 s on average. For the largest matrix on the Opteron
system, the execution time for the default broadcast mechanism varies between about 200 s and
more than 500 s. This time can be reduced to less than 6 s by deferred allocation and to less than 5 s
by using broadcast tables.

9.3.3 Comparison with state-of-the-art implementations of Cholesky Factorization

The results above show that deferred allocation and broadcast tables can improve both the
memory footprint as well as the execution time significantly. In this section, we show that the

195

Chapter 9: Optimizing broadcasts

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

100

101

102

103

104

105

106

Broadcasts
Peek views

Figure 9.8: The number of broadcasts and readers in cholesky as a function of the size of the matrix

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

100

101

102

103

104

105

106

Nu
m

be
r o

f a
llo

ca
tio

ns

default
dfa
dfa+bt

(a) Opteron platform

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

100

101

102

103

104

105

106

107

Nu
m

be
r o

f a
llo

ca
tio

ns

default
dfa
dfa+bt

(b) SGI system

Figure 9.9: Number of allocations of 512KiB-blocks from memory pools during execution of cholesky.
The configurations are the same as in Figure 9.7.

resulting performance is comparable to state-of-the-art implementations of Cholesky Factorization
for many-core systems. To this end, we compare our implementation based on OpenStream to
parallel Cholesky Factorization provided by PLASMA [60] and an OpenMP implementation by
Intel’s MATH KERNEL LIBRARY [2], presented below.

PLASMA and QUARK

PLASMA [60] (PARALLEL LINEAR ALGEBRA SOFTWARE FOR MULTI-CORE ARCHITECTURES)
is a library providing a set of ready-to-use functions for dense linear algebra operations optimized
for the execution on multi-socket multi-core systems. The aim of PLASMA is to provide efficient
implementations of LAPACK [12] routines for modern parallel hardware architectures that can
be used as a drop-in replacement of existing implementations. Internally, PLASMA breaks
operations down into multiple computations with data dependences and passes the resulting
DAG of dependent tasks to the QUARK [85] scheduler. As a computation may result in a large
number of task executions, PLASMA creates tasks on-the-fly and passes them to QUARK as
soon as possible. Each QUARK task is defined by a pointer to a function with the code to be
executed by the task, a set of parameters and a specification of the modes in which parameters
are accessed (read, write or both) as well as the size of the data. The order of task execution is
derived automatically from the parameters of the task by the QUARK scheduler. In addition to
data dependences, the scheduler also takes into account information about the topology of the
machine based on information obtained from the HWLOC [30] library. High sequential performance
of each task is achieved through calls to an optimized BLAS library. For our experiments, we have

196

Chapter 9: Optimizing broadcasts

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

100

101

102

103

104

105

106

Nu
m

be
r o

f r
ef

ill
s

default
dfa
dfa+bt

(a) Opteron platform

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

100

101

102

103

104

105

106

Nu
m

be
r o

f r
ef

ill
s

default
dfa
dfa+bt

(b) SGI system

Figure 9.10: Number of refills during execution of cholesky for blocks of 512KiB. The configurations are
the same as in Figure 9.7.

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

10-2

10-1

100

101

102

103

Ex
ec

ut
io

n
tim

e
[s

]

default
dfa
dfa+bt

(a) Opteron platform

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

10-3

10-2

10-1

100

101

102

Ex
ec

ut
io

n
tim

e
[s

]

default
dfa
dfa+bt

(b) SGI system

Figure 9.11: Execution time of cholesky with and without broadcast tables. The configurations are the
same as in Figure 9.7.

197

Chapter 9: Optimizing broadcasts

configured the latest available version of PLASMA (2.6.0) to use the sequential kernels of the MKL
for each task.

Parallel Cholesky Factorization using the MKL

Besides the sequential implementations of linear algebra routines, the INTEL MATH KERNEL
LIBRARY [2] also offers parallel implementations of BLAS [20] and LAPACK [12] operations,
including the dpotrf function for Cholesky Factorization of double precision floating point
matrices. These implementations are based on OpenMP and automatically adapt the tile size to
the target architecture [8]. For our experiments, we used the parallel implementation of the latest
release of the MKL, which was the INTEL MATH KERNEL LIBRARY 11.1 UPDATE 3 FOR LINUX at
the time the experiments were run.

Results

Figure 9.12 shows the execution time in seconds for the OpenStream implementation, the
parallel implementation by the MKL and for PLASMA, operating on matrices whose size ranges
from 28 × 28 to 215 × 215 double precision floating point elements. As in the previous graphs,
each point represents the median value for 50 runs using all 64 cores on the Opteron platform
and all of the 192 cores of the SGI system and error bars indicate the standard deviation. On the
Opteron platform, the parallel implementations by the MKL and OpenStream perform equally
well, while PLASMA is slightly slower for matrices with more than 213 × 213 elements. The fastest
implementations on the SGI system are OpenStream and PLASMA with the same execution time.
In contrast to the Opteron system, the parallel implementation by the MKL is by far the slowest
implementation on the SGI system. In addition, the execution time of the parallel version of the
MKL routine has huge variations for large matrices. As the source code of the MKL is not publicly
available, we could not investigate the cause for the low performance and the variations, but we
suspect that this is related to the synchronization scheme used by the OpenMP code of the MKL.

The absolute performance in GFLOPS is shown in Figure 9.13 3. As the absolute performance is
proportional to the inverse of the execution time shown above in Figure 9.12, OpenStream and the
MKL reach higher values than PLASMA on the Opteron system for larger matrices. Similarly,
OpenStream and PLASMA outperform the MKL on the SGI system. For a fixed block size for all
experiments as in the graphs, parallelism in cholesky increases with the size of the matrix. Hence,
for small matrices parallelism is limited and might even be below the number of cores of the
system and for large matrices all cores can effectively contribute to the factorization of the matrix.
As a result, the graphs show that the absolute performance increases with the size of the matrix.

The highest median performance of about 1.8TFLOPS is achieved by both PLASMA and
OpenStream for matrices with 215 × 215 elements on the SGI system, representing about 50% of
the theoretical peak performance of the machine of 24 · 153.6GFLOPS ≈ 3.67TFLOPS [3]. Given
the fact that the peak performance can only be achieved for embarrassingly parallel algorithms
operating on the register bank, the exploitation of the machine for Cholesky Factorization can be
considered as high. However, the performance increase between matrices of size 214 × 214 and
matrices of 215 × 215 elements gives reason that performance has not leveled out. We could not
evaluate the performance of all implementations with bigger matrices due to a technical restriction
of PLASMA to matrices with less than 232 elements.

The memory footprint of the three implementations is illustrated in Figure 9.14. For large
matrices, OpenStream and the MKL require the least amount of memory on both systems. The
memory footprints of PLASMA and the MKL are smaller than the footprint of OpenStream only
on the SGI system for small matrices.

9.3.4 Conclusion

The comparison of different versions of the OpenStream run-time using the default immediate
allocation scheme, using deferred allocation and using both deferred allocation and broadcast ta-

3. These values are based on the number of floating point operations for a Cholesky Factorization of a matrix of 2N ×2N

of 1
3
23N + 1

2
22N + 1

6
2N as reported in [21].

198

Chapter 9: Optimizing broadcasts

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

0

10

20

30

40

50

60
Ex

ec
ut

io
n

tim
e

[s
]

OpenStream
MKL
PLASMA

(a) Opteron platform

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

0

2

4

6

8

10

12

14

Ex
ec

ut
io

n
tim

e
[s

]

OpenStream
MKL
PLASMA

(b) SGI system

Figure 9.12: Execution time of cholesky compared to state-of-the-art implementations for many-core
systems

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

0

50

100

150

200

250

300

350

Pe
rfo

rm
an

ce
 [G

FL
OP

S]

OpenStream
MKL
PLASMA

(a) Opteron platform

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

0

500

1000

1500

2000

Pe
rfo

rm
an

ce
 [G

FL
OP

S]

OpenStream
MKL
PLASMA

(b) SGI system

Figure 9.13: Performance of cholesky compared to state-of-the-art implementations for many-core systems

bles shows that broadcast tables yield the best performance and the smallest memory footprint for
cholesky, a benchmark that uses the broadcast mechanism of OpenStream extensively. The results
of the comparison with PLASMA and the MKL show that the dynamic single assignment imple-
mentation in OpenStream using broadcast tables is able to match the performance of PLASMA
operating on a shared memory matrix with interleaved allocation for load balancing across the
machine’s memory controllers. All benchmarks have been tuned for the target architecture with
respect to the block size and conflict misses in the cache using appropriate values for the padding
of the shared memory matrices. Hence, the overhead on the memory footprint due to the use of
dynamic single assignment as well as the overhead on execution time of the OpenStream run-time
can be considered as sufficiently small and OpenStream can be considered as a state-of-the-art
run-time system that enables the implementation of high performance applications for many-core
systems.

9.4 NUMA-aware broadcasts with on-demand copies
As shown in the previous section, broadcast tables can reduce the memory footprint of an

application with frequent broadcasts significantly. However, in contrast to the default scheme for
broadcasts, in which every reader has its own input buffer, all readers of a broadcast read from

199

Chapter 9: Optimizing broadcasts

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

10-3

10-2

10-1

100

101

102
M

em
or

y
fo

ot
pr

in
t [

Gi
B]

OpenStream
MKL
PLASMA

(a) Opteron platform

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

10-3

10-2

10-1

100

101

102

M
em

or
y

fo
ot

pr
in

t [
Gi

B]

OpenStream
MKL
PLASMA

(b) SGI system

Figure 9.14: Footprint of cholesky compared to state-of-the-art implementations for many-core systems

refcount

broadcast_table

data

src_node

Figure 9.15: Broadcast table with support for multiple copies

the same input buffer. As this buffer is located on a single NUMA node, this potentially creates
contention on a single memory controller and may lead to poor data locality during execution of
the readers.

Deferred allocation for broadcasts suffers from a similar problem for data locality. Compared
to the default mechanism, the memory footprint is reduced due to the reuse of buffers, but it is
not minimal. Each reader still reads from a private buffer and due to the fact that all buffers of
a broadcast are allocated by the worker executing the producer of the broadcast, all buffers are
placed on the same node. As with broadcast tables, this potentially leads to high contention and
poor data locality. In addition, multiple buffers with the same data might co-exist, which represents
a redundancy that might result in a waste of cache space.

In this section, we address the locality of memory accesses and contention of broadcasts by
generalizing the concept of broadcast tables. Instead of referencing a single input buffer located on
a single node, the generalized form of broadcast tables, presented below, is able to provide copies
of the data on multiple nodes, which allows readers executed by workers associated to the same
NUMA node to benefit from locally available data.

9.4.1 Broadcasts with on-demand copies

Figure 9.15 gives an example of the data structure for generalized broadcast tables. A first
modification compared to broadcast tables with a single copy of the data consists in the replacement
of the data pointer in the data structure representing a broadcast table with an array of pointers to
input buffers with one entry per NUMA node. After the termination of the producer of a broadcast,
this table only contains a single valid entry, pointing to the input buffer of the first reader. To
find this initial entry quickly without having to seek through the entire array, the broadcast table
contains an additional field called source_node, which indicates on which NUMA node the
original input buffer is placed. In the example of Figure 9.15, the input buffer of the first reader
is located on node one. The pointer to the input buffer of the first reader can be determined in
constant time by indexing the data array with src_node. All data pointers of the peeking views
of the remaining readers are initially set to NULL, indicating that it has not yet been determined
which input buffer will be accessed by a reader. As with broadcast tables using a single copy, the

200

Chapter 9: Optimizing broadcasts

update of the data pointer is delayed to the beginning of the execution of a reader. The generalized
form of broadcast table can take advantage of this mechanism and may create a local copy of the
broadcast data as the node on which the reader executes is known at that moment. The steps that
are necessary for this update are carried out by the procedure prepare_peek_data, which is
shown in Algorithm 10.

The first lines of the algorithm determine which worker is executing the reader whose peek
view has been passed to the function, its NUMA node and the broadcast table of the view. The test
in Line 6 checks whether a copy of the data is already available on the local node. If this is the case,
the procedure simply sets the data pointer of the view to the appropriate entry of the array of the
broadcast table and returns (Lines 7 and 8).

The first check for a local copy might fail in two situations. As prepare_peek_data can be
called concurrently for many readers at the same time, it might be that a local copy is currently
being created and will become available shortly after the check, indicated by the value updating
in the array of pointers to local copies. In this case, the reader can either wait for the copy to be
available by going back to the first check, as in Line 13 (busy waiting), or the reader can decide
to use a remote copy instead, as in Line 15. Whether the reader waits or not can be set through a
configuration option of the run-time at compile time, referred to as busy_wait in the algorithm.

If no other worker is currently creating a local copy, the reader allocates a copy itself as shown
in Lines 18 to 27. The reader needs to update the according entry in the array of copies atomically
in Line 19 to indicate to concurrent readers that a copy is being created. This update might fail if
another worker has decided to do likewise between the last check and the attempt of the atomic
update. If this is the case, the worker simply needs to check the status of the copy again by going
back to the label retry. If the atomic update succeeds, the reader is responsible for the allocation
and initialization of the local copy and determines the local memory pool (Line 20), allocates an
input buffer (Line 21), copies the contents of the original buffer (Line 22) and updates the broadcast
table (Line 23).

Figure 9.16 illustrates the execution of Algorithm 10 for the peek view of the nth reader tn−1c of
a broadcast. The initial situation is shown in Figure 9.16a, in which already two copies of the input
data exist on nodes one and two and where tn−1c is executed by a worker on node N − 2, with N
standing for the total number of NUMA nodes of the system. As the entry of the data array of the
broadcast table is initially NULL, the reader allocates its own buffer and sets the corresponding
entry to updating indicated by the letter U in Figure 9.16b. Next, it copies the contents of the
original buffer to the newly allocated local buffer as shown in Figure 9.16c. As the broadcast table
indicates that the source node is the second NUMA node with an identifier of one, the pointer
to the original buffer is retrieved from the second entry of the data array. Note that during the
copying, the entry for the (N − 1)th node remains updating, since setting it to the address of the
newly allocated buffer could result in read accesses to incomplete data by concurrent readers of
the same node. When all data has been copied to the new buffer, the corresponding entry in the
data array of the broadcast table can be set to the buffer’s address (Figure 9.16d). The reader tn−1c

becomes ready for execution and reads its input data from the local node.
As there is exactly one single entry per NUMA node in the data array of a broadcast table,

the maximum number of copies per broadcast is limited to the number of NUMA nodes. For a
high number of readers in a broadcast, the memory footprint is thus lower than in the default
broadcast mechanism with per-reader copies, but higher than for broadcast tables with a single
copy. Similarly, the overhead for a copy is only generated for the first reader on a node, resulting in
less time spent on copying than by the default mechanism and more time compared to broadcast
tables with a single copy. However, all subsequent readers executing on the same node can simply
reuse the appropriate entry of the data array without any overhead, resulting in accesses to local
memory during execution and less contention on the node containing the input buffer of the first
reader of the broadcast 4.

4. If busy waiting is disabled, memory accesses might still be remote if subsequent readers on the same node become
ready before the copy is ready.

201

Chapter 9: Optimizing broadcasts

Algorithm 10: prepare_peek_data(vp)

1 w ← this_worker()
2 nodew ← local_node_of_worker(w)
3 bt← vp.bctable
4

5 retry:
6 if bt.data[nodew] 6= null and bt.data[nodew] 6= updating then
7 vp.data← bt.data[nodew]
8 return
9 end

10

11 if bt.data[nodew] = updating then
12 if busy_wait then
13 goto retry
14 else
15 vp.data← bt.data[bt.src_node]
16 return
17 end
18 else
19 if atomic_set(bt.data[nodew],updating,null) = success then
20 pool← memory_pool_of (nodew)
21 vp.data← alloc(pool, vp.horizon)
22 memcpy(vp.data, bt.data[bt.src_node], vp.horizon)
23 atomic_set(bt.data[nodew], vp.data,updating)
24 return
25 else
26 goto retry
27 end
28 end

9.4.2 Experimental evaluation

To evaluate the impact of the generalized form of broadcast tables on performance and on the
memory footprint, we have executed the cholesky benchmark with two configurations of a run-time
implementing benchmark tables with per-node copies. The first configuration, named busy waiting,
uses the busy waiting feature of Algorithm 10 to wait for the completion of a copy, while the other
configuration, labeled nowait, refers to the copy on the source node if a copy to the local node
is in progress. For the comparison with broadcast tables using only a single copy, we have also
added a configuration named single copy to the graphs, which corresponds to the broadcast tables
of Section 9.1 5.

Figure 9.17 shows the median memory footprint of 50 runs of cholesky with each configuration
of the run-time. Error bars indicate the standard deviation. As expected, broadcast tables with
multiple copies increase the memory footprint on both platforms for larger matrices compared to
broadcast tables with a single copy. As the number of copies is limited by the number of nodes,
this increase is higher on the SGI system than for the Opteron platform. The differences between
the configuration with busy waiting and the configuration that does not wait until a local copy is
available are negligible.

Figure 9.18 shows the fraction of requests to local memory on the Opteron platform measured

5. Technically, the broadcast tables of Section 9.1 have been implemented with the same data structures as for broadcast
tables with multiple copies, but with a modification of Algorithm 10 that forces all readers to use the copy on the source
node.

202

Chapter 9: Optimizing broadcasts

refcount

broadcast_table

data

src_node

...peek_view
next
peek_view

bctable

...

peek_view peek_viewpeek_view

data

next
bctable

...

data

next
bctable

...

data

next
bctable

...

data

next
bctable

...

data
...

(a) Initial situation

refcount

broadcast_table

data U

src_node

...peek_view
next
peek_view

bctable

...

peek_view peek_viewpeek_view

data

next
bctable

...

data

next
bctable

...

data

next
bctable

...
data

next
bctable

...

data
...

allocate

(b) Allocation of an input buffer on the target node and update of the data pointer in the
broadcast table to updating

refcount

broadcast_table

data U

src_node

...peek_view
next
peek_view

bctable

...

peek_view peek_viewpeek_view

data

next
bctable

...

data

next
bctable

...

data

next
bctable

...

data

next
bctable

...

data
...

copy

(c) Transfer of data from the source node to the new buffer

refcount

broadcast_table

data

src_node

...peek_view
next
peek_view

bctable

...

peek_view peek_viewpeek_view

data

next
bctable

...

data

next
bctable

...

data

next
bctable

...

data

next
bctable

...

data
...

(d) Update of the entry in the broadcast table

Figure 9.16: Broadcast table with node-local copies

203

Chapter 9: Optimizing broadcasts

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

0

5

10

15

20
M

em
or

y
fo

ot
pr

in
t [

Gi
B]

single copy
busy waiting
nowait

(a) Opteron platform

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

0

5

10

15

20

25

30

35

40

M
em

or
y

fo
ot

pr
in

t [
Gi

B]

single copy
busy waiting
nowait

(b) SGI system

Figure 9.17: Memory footprint of broadcast tables with local copies

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

60

65

70

75

80

85

90

95

100

Fr
ac

tio
n

of
 re

qu
es

ts
 to

 lo
ca

l m
em

or
y

[%
]

single copy
busy waiting
nowait

Figure 9.18: Fraction of requests to local mem-
ory of broadcast tables with local copies on the
Opteron system

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Nu

m
be

r o
f L

3
m

is
se

s
pe

r K
in

st
ru

ct
io

n Opteron system
SGI platform

Figure 9.19: Number of last level cache misses
per thousand instructions of cholesky using
broadcast tables with a single copy

with hardware performance counters. Due to the absence of these counters on the SGI platform, we
only provide statistics on the locality for the Opteron system. For very small matrices, the locality
is high due to the low number of blocks (a single block for matrices with 28 × 28 elements, four
blocks for 29 × 29 matrices and so on) and a high probability of tasks processing these blocks to be
stolen by workers on the same node. The lowest locality is achieved for matrices with 210 × 210

elements. For larger matrices parallelism increases, such that the probability of remote steals
becomes lower. However, the configurations with local copies yield a significantly higher locality
for accesses to main memory, reaching more than 95% for matrices with 215 × 215 elements.

To estimate the impact of the improved locality on performance, we have also measured the
number of last level cache misses per thousand instructions. Figure 9.19 shows the median number
of last level cache misses for 50 instructions multiplied by thousand and divided by the median
number of instructions for cholesky using broadcast tables with a single copy. In comparison with
the number of misses per thousand instructions of the other benchmarks, presented in Figure 6.21a
and Figure 6.21b in Section 6.5 on page 127, these values are low and cholesky can be considered as
cache bound. The improvement of local copies on performance is thus expected to be low.

Figure 9.20 shows the median execution time as a function of the matrix size for both test
platforms. The values for the three configurations are nearly identical. This confirms the above
assumption that data locality only has little influence on the performance of this benchmark.
However, applications with a higher frequency of last level cache misses and thus a higher

204

Chapter 9: Optimizing broadcasts

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

0

5

10

15

20

25

30

35
Ex

ec
ut

io
n

tim
e

[s
]

single copy
busy waiting
nowait

(a) Opteron platform

27 28 29 210 211 212 213 214 215 216

Number of elements in each dimension of the matrix

0

1

2

3

4

5

6

7

Ex
ec

ut
io

n
tim

e
[s

]

single copy
busy waiting
nowait

(b) SGI system

Figure 9.20: Execution time of cholesky using broadcast tables with a single copy and local copies

frequency of accesses to main memory could take advantage of the locality improvement and their
execution time could be reduced. Furthermore, the performance of these applications might differ
depending on whether busy waiting is employed or not.

9.4.3 Conclusion

The analysis of the results for the cholesky benchmark showed that broadcast tables with on-
demand node-local copies yield a significantly higher fraction of accesses to local memory, which
comes with a substantial increase of the memory footprint. However, the execution time of cholesky
cannot be improved by these techniques due to the application’s high cache hit rate. Hence,
broadcast tables with a single copy for all readers of the broadcast are the best choice both in terms
of performance and the memory footprint for the cholesky benchmark.

However, other benchmarks with different characteristics, such as more last level cache misses
than cholesky or other timings for tasks to become ready might benefit from broadcast tables with
multiple copies. The conditions under which this is true are to be determined in future work.

9.5 Summary
In this chapter we analyzed the memory footprint, the execution time and the data locality of

broadcasts in OpenStream. We showed that both the footprint as well as the average waiting time
of a reader until activation are proportional to the number of readers participating in the broadcast.
We then introduced broadcast tables that allow multiple tasks to share a single input buffer and
showed that the memory footprint remains constant, independently from the number of readers
involved in the broadcast. Depending on the size of the data to be broadcast, this results in an
improvement of the average waiting time and a reduction of the memory footprint by more than
one order of magnitude. The experimental evaluation involving a dynamic single assignment
implementation of Cholesky Factorization using OpenStream, a shared memory implementation
for many-core systems based on PLASMA and an implementation using the parallel routine
for Cholesky Factorization of the INTEL MATH KERNEL LIBRARY showed that using broadcast
tables, OpenStream is able to match the performance of state-of-the-art linear algebra libraries for
many-core systems.

As an outlook to further optimizations regarding the locality of memory accesses related
to broadcasts, we analyzed the performance, the memory footprint and the data locality of a
generalized concept of broadcast tables with on-demand creation of per-NUMA node copies
of data. For the cholesky benchmark these optimizations yield a higher data locality, but an
increased memory footprint and the same performance as broadcast tables with a single copy.

205

Chapter 9: Optimizing broadcasts

Further research is thus necessary to determine under which conditions these optimizations can be
beneficial for the execution time.

206

10 Performance analysis of task-parallel
programs and run-times

The performance of task-parallel programs depends on many aspects, ranging from static
code optimizations by the compiler or manual data-layout transformations by the programmer to
dynamic optimizations regarding the structure of the task graph, the order of task creation and
interactions with the operating system and the underlying hardware architecture. Identifying
performance anomalies and finding their cause requires a detailed understanding of all of these
aspects. In particular, a programmer needs to understand the complex interactions between the
software and hardware components involved in the execution. One way to analyze performance
is to collect and record all relevant dynamic events into a trace file and to use a tool for off-line
analysis after termination of the program. A visual representation of events, system entities and
their relationships is an approach to provide the necessary insight for an accurate analysis, sorting
causes and effects and distinguishing application-specific anomalies from inefficiencies in the
heuristics used by the run-time system. During the last decades, a multitude of tools for trace-
based analysis have been developed, e.g. [69, 67, 1]. However, most of them target distributed
applications executing on clusters systems that communicate through message passing and thus
do not natively support performance analysis of task-parallel applications and run-time systems.

In this chapter, we present Aftermath, a tool for interactive, off-line visualization, filtering and
analysis of execution traces that we have developed during this thesis primarily for performance
debugging of OpenStream applications and the OpenStream run-time. The tool has been used
extensively during the implementation of the benchmarks presented in Section 6.1 and for per-
formance debugging of the optimizations introduced in Chapters 7, 8 and 9 and allowed us to
gain deep insight into the interactions between the application, the run-time, the operating system
and the hardware. However, Aftermath provides a large set of tools that apply to performance
analysis of task-parallel applications and run-time systems in general and can thus be reused
for performance debugging of other task-parallel languages as well. Different key metrics and
indicators can be displayed jointly, which accelerates the discovery of significant correlations. For
more complex relationships, Aftermath offers powerful filtering mechanisms and is able to match
relevant information with the topology of the machine. A responsive graphical user interface gives
quick access to all of these features, allowing to explore traces rapidly and to control the degree of
detail that is needed for the analysis.

The chapter is organized as follows. In Section 10.1, we identify the requirements for perfor-
mance analysis in general before we give an overview of Aftermath in Section 10.2. Section 10.3
provides examples of the use of Aftermath for performance debugging of task-parallel applications.
Section 10.4 illustrates how Aftermath can be used for performance debugging of the run-time

Chapter 10: Performance analysis of task-parallel programs and run-times

system. Directions of ongoing and future research on guided performance analysis are pointed out
in Section 10.5. A brief discussion of related work is provided in Section 10.6 and a summary is
given in Section 10.7. Parts of this chapter were previously published in [47, 45].

10.1 Requirements for trace-based performance analysis
The interactions between hardware and software components involved in the execution of a

task-parallel program can generate a high number of dynamic events, especially on many-core
systems with dozens or hundreds of cores. Deriving statistics from these events or filtering events
relevant to a specific kind of performance analysis is thus likely to be computationally intensive,
such that on-line analysis during execution can have a significant impact on the system that is
being analyzed and thus lead to biased results. For example, to determine the average duration
of all tasks belonging to a certain set of task types in a specific interval, it is necessary that each
worker checks for each task it executes if the type of the task belongs to the set and if its beginning
and end of the execution lay within the interval. Furthermore, the duration of tasks matching these
criteria must be calculated and stored at a memory location that is known during calculation of the
average duration. Especially the last step might change the timing of events during execution of the
program. If the average is calculated by a single worker, this worker cannot execute tasks during
the calculation, which decreases parallelism. If the average is calculated concurrently, multiple
workers must synchronize on intermediate results, which might lead to differences in the timing
or have an influence on micro-architectural events (e.g., on the number of memory accesses if
spin-locks are used for synchronization). More complex analyses usually require more processing
time and might thus change the timing at execution time substantially. In addition, the types of
analyses must be known in advance, before execution of the application and it is impossible to
carry out additional analyses for the same execution after termination of the program.

A common strategy to deal with the issues above is to rely on off-line analysis of trace files. In
this approach, a subset of the dynamic events related to the execution of an application is written
to a trace which is only analyzed once the application has terminated. Besides the overhead for
the collection of relevant events at execution time and for storing the events to the trace file, the
analysis does not have any impact on the system that is being examined. This allows a user to
investigate all relevant aspects of the execution without limitations for the duration or the amount
of memory that is required for the analysis. If additional analyses are needed, these can be based
on the events already collected the trace file and do not require re-executing the application.

The presentation below first introduces two recurring scenarios for performance debugging,
referred to as trace exploration and hypotheses testing. We then present the requirements on trace
visualization and filters for trace data, before we give a brief overview of how trace data is collected
in the OpenStream run-time.

10.1.1 Trace exploration and hypothesis testing

We identified two key scenarios frequently occurring in the performance debugging based on
execution traces. In the first case, the programmer suspects that there is a performance anomaly
or is looking for optimization opportunities, but has not identified any specific issues. Browsing
through an execution trace, which we refer to as trace exploration, can help build up a hypothesis
by identifying program behavior that leaves room for improvement. In the second case, the
programmer has already developed one or more hypotheses and tries to confirm or to refute them.
In the rest of the chapter, this scenario is referred to as hypothesis testing. Performance debugging
is often an iterative refinement process, alternating between these two situations, as shown in
Figure 10.1. Usually, the programmer starts by executing a program, explores the trace containing
the events collected at execution, identifies possible sources of performance anomalies, tests the
hypotheses and finally fixes the issues in the application or run-time system. As trace exploration
and hypothesis testing are the cornerstones of performance analysis, a program for trace analysis
should provide appropriate tools for data selection and examination that fit both situations.

208

Chapter 10: Performance analysis of task-parallel programs and run-times

Trace
exploration

Hypo-
thesis
testing

Proto-
typing a
solution

Executing
the appli-

cation

Figure 10.1: Stages in the development of task-
parallel applications and run-times

Trace
file

Application

Hardware
- Stall cycles
- Cache misses
- Local / remote memory accesses
- ...

Run-time
- Task creation
- Inter-task communication
- Synchronization
- ...

Figure 10.2: Capturing events related to the
interactions between the application, the run-
time system and the hardware

10.1.2 Trace visualization

Execution traces of task-parallel applications generally contain two types of information. The
first type relates to static information about the execution context, e.g., the number of cores, the
machine topology and the different tasks or work functions, while the second type refers to
dynamic information on execution events, e.g, worker state transitions, communication events
and samples collected using hardware performance counters. For efficient analysis, the basic
topological, temporal and relational aspects need to be represented adequately at the same time.
In particular, the user should be able:

– to distinguish the activity of different cores and worker threads,
– to observe activity over time and the evolution of metrics,
– to precisely identify the different types of events, and
– to determine involved entities, e.g., source and destination of data exchanges.

Visualization is an appropriate method to present large quantities of events and provides various
means to present multi-dimensional data (e.g., by the position on the screen, colors, patterns,
etc.). A graphical representation should provide adequate support to make apparent any strong
correlations between events. For example, if a performance issue only occurs on specific cores, in
specific intervals or after specific events, this behavior should be directly identifiable on the visual
representation.

The interactive exploration of traces is an essential aspect that provides a quick overview
of the trace data and helps to develop a working hypothesis. Navigation along the different
dimensions, e.g., changing the interval to be displayed or limiting the graphical representation to a
subset of cores should therefore be intuitive to the user. With trace files of up to several gigabytes,
containing hundreds of thousands of events, rendering needs to be sufficiently fast for interactive
trace exploration.

10.1.3 Control over the amount of detail

For the exploration of specific aspects or in order to reduce the amount of data that is visualized,
it should be possible to filter the information from the trace, such that only relevant information
is displayed. To avoid interrupting the user’s work-flow, there should not be any notable delays
and the result should be visible immediately when the filter is applied. Filters also represent an
essential tool for hypothesis testing. To check if an assumption is correct, the user needs to filter
out all situations for which the premise of the hypothesis does not hold. As conditions can be
complex, it should be possible to combine filters easily.

209

Chapter 10: Performance analysis of task-parallel programs and run-times

However, even with powerful filtering schemes, visual feedback is not always sufficiently
precise for a distinct conclusion. In such cases it may be necessary to statistically correlate events,
which means that it should be possible to aggregate trace data and display statistical information
on event distributions, either presented in separate views or along with the information that was
quantified. The latter case might enable the user to draw conclusions on relationships between
existing and newly aggregated aspects. If none of the basic statistical counters alone can provide
enough information about a relationship, it is essential to be able to combine multiple counters.
The user should be guided through this process by a user interface that allows to precisely select
which information should be derived and how it should be displayed.

Finally, it must also be possible to obtain detailed information about specific events. This can
help to detect outliers or to develop generalized rules from particular situations. For example, the
user could select a few corner cases for task duration one after another and then try to figure out
the generalized conditions for fast or slow task execution.

10.1.4 Recording execution traces of task-parallel applications

The collection of trace data itself also plays an important role for performance analysis. This
involves the methods for data collection during execution as well as the definition of a file format
that is suited to store all relevant events. However, as this chapter focuses on methods for
the presentation and processing of existing traces, we only motivate basic requirements for the
collection of trace data and give a short overview of the instrumentation of programs and the
run-time, enabling support for execution traces in OpenStream.

To keep the amount of work for programmers to support execution traces low, tracing should
be implemented as a generic, application-independent mechanism. Ideally, the instrumentation of
the application should be done fully automatically or tracing should be provided automatically
through underlying software and hardware interfaces. For programs whose execution is managed
by a run-time system, tracing is thus often implemented transparently to the application within
the run-time and does not require any specific support by the application. However, it should also
be possible to record application-specific events and high-level information that cannot be derived
automatically, e.g., the beginning or the end of measurement intervals. Support for low-level
events, such as hardware performance counters or statistics obtained from the operating system is
essential for the analysis of the interplay between hardware and software components.

The format of trace files should also be application-independent, such that a generic tool for
trace analysis supporting this format can be used to analyze a wide variety of applications. For
example, instead of using a fixed set of task names with a predefined meaning, the format should
support the definition of a variable set of task types. To keep the size of trace files low, the format
should contain as few redundancies as possible. In addition, a binary representation for trace data
is preferable as binary representations often require less space than textual representations and can
be parsed faster when the trace file is loaded by the performance analysis tool. Support for large
quantities of events and large file sizes however are mandatory, especially on large systems with
high numbers of cores.

Figure 10.2 shows a basic view of the implementation of tracing in OpenStream. The run-time
is responsible for the collection of all events as well as for the creation of the trace file. To avoid
time-consuming system calls related to tracing and thus to reduce the overhead of serializing
events into the trace file, all events are collected in main memory and are only written to the trace
file at termination of the program. The majority of the events are generated by the run-time itself.
Examples of such events are task creations, information about accesses to views, task destructions,
the beginning and end of the execution of a task, work-stealing and work-pushing events. The
only application-specific events that are currently supported are the beginning and the end of
measurement intervals, which can be recorded through simple calls to run-time functions as
described in Section 6.2.3. Low-level events from the hardware are recorded by the run-time using
the PAPI [80] library, which provides access to monotonically increasing counters available on the
target system that measure how many micro-architectural events of a certain type have occurred.

210

Chapter 10: Performance analysis of task-parallel programs and run-times

The set of events to be sampled is set up at the beginning of the execution, but the counters are only
enabled during measurement intervals to avoid including unrelated micro-architectural events
in the trace. Although the period for the sampling of hardware performance counters during the
measurement intervals can be arbitrary, we have chosen to sample each counter only before and
after the execution of each task. While this leads to sampling periods of variable length and a
relatively low resolution, this strategy allows a tool reading the trace to derive statistics for each
individual task (e.g., the number of cache misses that have been generated during execution of
each task). Moreover, a low sampling period helps to keep the size of the trace file small.

In the next section, we introduce Aftermath, a tool that we have developed to meet the
requirements outlined above for the analysis of execution traces of task-parallel programs and
run-time systems. Examples for the use of Aftermath for performance debugging of task-parallel
applications and run-time systems are given in the following sections.

10.2 Aftermath
We have designed and implemented Aftermath 1 for fast, interactive, visual exploration and

analysis of traces generated by fine-grained task-parallel applications and their run-time systems,
executing on modern many-core architectures. In this section, we give an overview of the design
of Aftermath and its features, we present the layout of its graphical user interface, we give an
outline of the required trace format and we explain how Aftermath can exploit information
from application symbol tables and trace annotations. Although Aftermath has primarily been
developed for OpenStream applications and the OpenStream run-time, many of its concepts apply
to task-parallel languages and run-times in general.

10.2.1 Organization of the main user interface

Figure 10.3 shows the main window of Aftermath during analysis of a trace file. The various
elements of the user interface are grouped into five different parts:

1. The timeline component in the center of the user interface shows the activity of each of the
cores over time (e.g. the different states of the worker threads associated to the cores,
evolution of performance counter data and specific discrete events, such as task creations,
and communication between workers).

2. The right side contains a group of statistical views aggregating individual events in order to
quantify basic information for an interval from the timeline view selected by the user (e.g.,
a histogram showing the distribution of task durations, a text field indicating the average
parallelism and a communication matrix indicating which cores and nodes communicate).

3. A set of filters for various basic properties at the left side allows the user to control what is
shown in the timeline component and in statistical views (e.g. only tasks of a specific type,
tasks whose execution duration is in a certain range, tasks that write to certain NUMA nodes,
etc.).

4. The bottom part is reserved for detailed textual information about a selected state and the task
execution associated to it (e.g. the task and state type, the duration and data-flow-specific
information about the producers of the task’s input data as well as the consumers of its
output data).

5. A menu bar at the top provides access to a set of generators for metrics derived from high-level
events or metrics that combine existing statistical counters (e.g. the average task duration,
number of bytes exchanged between specific NUMA nodes, the ratio of two hardware
performance counters, etc.). Selecting the appropriate menu entry opens the corresponding
dialog that guides the user through the creation of a derived metric.

Aftermath supports arbitrary zooming and scrolling along the timeline through an intuitive
interface. Filters directly affect the information shown in the timeline and the statistical views

1. Available under a GNU GPL license at http://www.openstream.info

211

http://www.openstream.info

Chapter 10: Performance analysis of task-parallel programs and run-times

3 1
2

4

5

Figure 10.3: Aftermath’s main window: timeline (1), filters (2), statistics (3), information on selected tasks
/ events (4) and menu bar for derived metrics (5).

for the selected portion of the trace to provide immediate visual feedback. Rendering has been
optimized carefully, such that no delays interrupt the user’s work-flow. During development of
Aftermath, we found that complete traversal even of multi-gigabyte traces only represents a small
fraction of the rendering time. Displaying only information that is visible at the selected zoom
level reduced the overall delay sufficiently. For example, instead of rendering all the state changes
in the timeline, only states that represent a relevant part of the interval defined by a pixel on the
screen are shown. For a set of communication events whose communication lines overlap, only
one line is drawn. The resulting rendering operations are carried out by the CAIRO GRAPHICS
LIBRARY [81]. For standard user interface components we have used GTK+ [82].

As the size of the different parts suggests, the main visual representation is the timeline
component. The user can choose a mode for visualization for the timeline from a set of modes, each
of which highlights specific aspects of the trace. The modes currently supported by the timeline
are the following.

– The default state mode shows which states the workers traverse over time. Aftermath supports
a handful of different states, which are mainly related to activities of the run-time. For
example, there are states for task execution, task creation, broadcasts and dependency
resolving of tasks. The state mode of the timeline allows the user to identify visually which
workers and how much time these workers spent in a particular state.

– In heatmap mode, the timeline represents the duration of tasks with different shades of red. We
refer to the visual representation of the timeline in this mode as a heatmap for short. Phases
during which a worker executes slow tasks are rendered in the heatmap using dark red,
while phases with fast tasks are white. The interval that defines which tasks are considered
as slow and which tasks are considered as fast can be set by the user or can be determined
automatically by Aftermath from the minimal and maximal duration of all tasks present in
the trace or from a subset of tasks defined by a filter. The number of shades that are used for
rendering is also configurable.

– The timeline in task type mode, also called typemap, associates a different color to every task

212

Chapter 10: Performance analysis of task-parallel programs and run-times

type found in the trace and shows which type of task each worker executes over time. The
term task type refers to a task construct in the source code. For example, an application with
three task constructs, one for tasks that perform matrix multiplication, one for auxiliary tasks
for the initialization of the application and one for the termination defines three task types.
Instances of these task types might be rendered using blue, green and yellow, respectively.
This allows the user to identify at which moments of the execution the different types of
tasks are executed and where they execute.

– When the timeline is in NUMA mode, it associates a color to each NUMA node and shows
which nodes are targeted by memory accesses performed by the tasks executed by each
worker over time. This information is derived from the addresses of memory accesses and
information on data placement present in the trace. The graphical representations generated
in NUMA mode are called NUMA maps. There are two kinds of NUMA maps. The first map
only takes into account read accesses and thus indicates which nodes are targeted by reads.
The other map analyzes write accesses and thus shows which nodes are targeted by write
accesses. More details on these views are provided in Section 10.4.1.

– The last mode that the timeline can be set into is called NUMA heatmap mode. Similar to the
NUMA modes, Aftermath analyzes memory accesses and placement information in this
mode to derive NUMA-related information. However, in NUMA heatmap mode both read
and write accesses are taken into account and combined with information about the topology
of the machine, also present in the trace. The result is a view that indicates the average
fraction of remote memory accesses per interval with different shades from violet to pink.
Intervals during which many tasks with a low fraction of remote memory accesses were
executed are rendered in violet, while intervals with a high fraction of remote accesses are
pink. This view is useful especially when the NUMA read and write modes show that a lot
of different nodes were targeted and thus do not show a clear relationship between accessing
nodes and the targeted nodes.

The different components of the user interface and the different modes for the timeline require
different kinds of information to be present in a trace. In the following paragraphs we briefly
discuss the layout and the types of information that can be stored in a trace file for Aftermath.

10.2.2 Trace format

Trace files for Aftermath are organized as streams of data structures, which can either contain
events (i.e., state changes, hardware performance counter values, communication events or dis-
crete events, such as the creation of a task or beginning and end of task execution), topological
information about the machine (e.g., how cores relate to the system’s NUMA nodes), descriptions
of hardware performance counters or information about the location of OpenStream-specific data-
flow buffers. Structures can appear in any order, e.g., the trace might contain events of different
cores in an interleaved fashion, as long as total order with respect to the timestamp for events is
preserved for each core. The interleaving of events from different cores keeps the overhead low
during collection of trace data and when this data is written to a file as no time-consuming sorting
is necessary. The total order of events per core limits the overhead when a trace file is loaded from
the disk.

Aftermath currently defines a native trace format, which is optimized for the OpenStream
run-time and for OpenStream applications. However, not all types of data structures are mandatory
for all kinds of analyses that are supported by the tool. Trace files that omit OpenStream-specific
events can still be loaded and only limit the set of analyses that can be carried out on the trace. For
example, if a trace file only contains events marking the beginning and the end of the execution of
each task but does not include information on accesses to input buffers, Aftermath cannot provide
information on the locality of memory accesses but can still be used for analyses based on task
durations and is able to visualize data for hardware performance counters. Hence, although After-
math has been developed primarily for the analysis of OpenStream programs and the OpenStream
run-time, it is also suited for the analyses of applications and run-times of other task-parallel

213

Chapter 10: Performance analysis of task-parallel programs and run-times

languages.
As traces can contain hundreds of thousands of events, trace data is stored in a binary format

to reduce its size and to avoid long parsing delays when a trace is opened. Further reduction of
the file size is achieved through the compression of traces with standard GNU/Linux tools, such
as GZIP, BZIP2 or XZ. Opening a compressed trace causes Aftermath to call the appropriate tool
for decompression and to read uncompressed data from an unnamed pipe.

Finally, the format was also designed to contain only few redundancies. Information not
explicitly available in the trace file, but needed for rendering or generation of basic statistics is
added to the internal representation when the trace is loaded into main memory or when the
information is needed during rendering. For example, the identifiers of NUMA nodes targeted
by accesses to input buffers are not stored in each data structure describing these accesses, but
are retrieved from the addresses of the accesses and the data structures describing the placement
of input buffers. This way, the information on the placement is only stored once for each buffer
regardless of the number of accesses.

10.2.3 Symbol tables and annotations

The development cycle for task-parallel applications and run-time systems introduced in
Section 10.1 contains steps in which the programmer inspects a trace and locates performance
bottlenecks as well as steps in which the code of the implementation needs to be modified.
To support these alternations during application development, Aftermath is able to relate the
information of the visual representation to the source code of the application. If the user specifies
the path to the executable of the application with debug symbols that was executed to obtain the
trace in addition to the name of the trace file on startup, Aftermath extracts these symbols and the
location of each symbol in the source code using standard command-line tools of the GNU/Linux
system, in particular NM. When a task is selected from the timeline, the tool retrieves the address
of the associated work-function, looks up the corresponding entry in the table with debug symbols
and shows the name of the work-function in the detailed text view. A click on this name starts an
editor that opens the source file containing the function and jumps to the correct line.

However, in the default naming scheme, the OpenStream compiler automatically generates
the names for the work-functions by concatenating the name of the function containing the task
construct with the string _wstream_df_workfn_ and a sequential number, which makes it
difficult to distinguish several tasks have been defined within the scope of the same function.
Therefore, we have added a new clause to OpenStream called task_name, which allows the
programmer to define a custom name for the work function associated to a task construct.

Another useful feature of Aftermath supporting the user in the development cycle are user-
defined annotations. A double-click on the timeline opens a dialog that lets the user enter an
arbitrary text and choose a color for the new annotation. Each annotation appears as a symbol on
the timeline at the time and core that corresponds to the position of the click. When the user moves
the mouse pointer over the annotation, Aftermath displays its contents. A double click on an
annotation lets the user change or delete the annotation. As Aftermath only displays annotations
and does not interpret their contents, annotations can be used to provide arbitrary information on
specific events (e.g., to label a specific task execution) or to mark specific moments of the execution
of the program (e.g., the beginning or end of an iteration of an algorithm). Since trace analysis can
be a time-consuming task taking hours or even days, involving more than one person, annotations
can be saved independently from the trace file and loaded for further analysis at a later point in
time.

10.3 Debugging application performance
After the overview of Aftermath above, we now present two cases that deal with issues that

we have encountered during development of benchmarks for the OpenStream project and that
illustrate how Aftermath can be used for performance debugging of task-parallel applications. The

214

Chapter 10: Performance analysis of task-parallel programs and run-times

CPU 0

CPU 2

CPU 4

CPU 6

CPU 8

CPU 10

CPU 12

CPU 14

CPU 16

CPU 18

CPU 20

CPU 22

CPU 24

CPU 26

CPU 28

CPU 30

CPU 32

CPU 34

CPU 36

CPU 38

CPU 40

CPU 42

CPU 44

CPU 46

CPU 48

CPU 50

CPU 52

CPU 54

CPU 56

CPU 58

CPU 60

CPU 62

0
.0

0
0
e
+

0
0

1
.0

0
0
e
+

1
0

2
.0

0
0
e
+

1
0

3
.0

0
0
e
+

1
0

4
.0

0
0
e
+

1
0

5
.0

0
0
e
+

1
0

6
.0

0
0
e
+

1
0

7
.0

0
0
e
+

1
0

8
.0

0
0
e
+

1
0

Sequential
initialization
with most of
the workers
being idle

Task execution

(a) All of the 64 workers are in task execution state (dark
blue) for almost the whole execution

CPU 0

CPU 2

CPU 4

CPU 6

CPU 8

CPU 10

CPU 12

CPU 14

CPU 16

CPU 18

CPU 20

CPU 22

CPU 24

CPU 26

CPU 28

CPU 30

CPU 32

CPU 34

CPU 36

CPU 38

CPU 40

CPU 42

CPU 44

CPU 46

CPU 48

CPU 50

CPU 52

CPU 54

CPU 56

CPU 58

CPU 60

CPU 62

0
.0

0
0
e
+

0
0

1
.0

0
0
e
+

1
0

2
.0

0
0
e
+

1
0

3
.0

0
0
e
+

1
0

4
.0

0
0
e
+

1
0

5
.0

0
0
e
+

1
0

6
.0

0
0
e
+

1
0

7
.0

0
0
e
+

1
0

8
.0

0
0
e
+

1
0

Fast tasks

Very slow tasks

Very slow tasks

Very slow tasks

(b) Heatmap mode indicating a relationship core→ task
duration

27.35%

0%

Fr
ac

ti
on

 o
f

ta
sk

s

30M1M Task duration [cycles]

(c) Distribution of the task duration

CPU 0

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

CPU 6

1
.0

0
0
e
+

1
0

2
.0

0
0
e
+

1
0

3
.0

0
0
e
+

1
0

4
.0

0
0
e
+

1
0

5
.0

0
0
e
+

1
0

6
.0

0
0
e
+

1
0

7
.0

0
0
e
+

1
0

Ratio close to 1Ratio close to 1
00

1.11.1
CPU 7

CPU 8

CPU 9

CPU 10

CPU 11

CPU 12

CPU 13

1
.0

0
0
e
+

1
0

2
.0

0
0
e
+

1
0

3
.0

0
0
e
+

1
0

4
.0

0
0
e
+

1
0

5
.0

0
0
e
+

1
0

6
.0

0
0
e
+

1
0

7
.0

0
0
e
+

1
0

Ratio close to 0Ratio close to 0

CPU 14

CPU 15

CPU 16

CPU 17

CPU 18

1
.0

0
0
e
+

1
0

2
.0

0
0
e
+

1
0

3
.0

0
0
e
+

1
0

4
.0

0
0
e
+

1
0

5
.0

0
0
e
+

1
0

6
.0

0
0
e
+

1
0

7
.0

0
0
e
+

1
0

Ratio close to 0Ratio close to 0

CPU 21

CPU 22

CPU 23

CPU 24

CPU 25

CPU 26

CPU 27

1
.0

0
0
e
+

1
0

2
.0

0
0
e
+

1
0

3
.0

0
0
e
+

1
0

4
.0

0
0
e
+

1
0

5
.0

0
0
e
+

1
0

6
.0

0
0
e
+

1
0

7
.0

0
0
e
+

1
0

Ratio close to 0Ratio close to 0

CPU 28

CPU 29

CPU 30

CPU 31

CPU 32

CPU 33

CPU 34

1
.0

0
0
e
+

1
0

2
.0

0
0
e
+

1
0

3
.0

0
0
e
+

1
0

4
.0

0
0
e
+

1
0

5
.0

0
0
e
+

1
0

6
.0

0
0
e
+

1
0

7
.0

0
0
e
+

1
0

Ratio close to 0Ratio close to 0

CPU 36

CPU 37

CPU 38

CPU 39

CPU 40

CPU 41

CPU 42

Ratio close to 0Ratio close to 0

CPU 43

CPU 44

CPU 45

CPU 46

CPU 47

CPU 48

CPU 49

Ratio close to 0Ratio close to 0

CPU 52

CPU 53

CPU 54

CPU 55

CPU 56 Ratio close to 0Ratio close to 0

00

1.11.1

00

1.11.1

00

1.11.1

00

1.11.1

00

1.11.1

00

1.11.1

00

1.11.1

(d) Ratio of local accesses to the total number of accesses

Figure 10.4: High-latency memory accesses of seidel using a shared matrix

first example features the detection of a design problem of the shared memory implementation
of the seidel benchmark that results in inefficient access to main memory. The second example
illustrates how multiple views and statistics can be combined to identify an issue related to branch
mispredictions in the k-means application.

10.3.1 Seidel: detecting contention on memory controllers

As a first example, we show how the cause for the poor scalability of the shared memory
implementation of seidel with sequential initialization of the global matrix of Section 6.6 can be
identified with Aftermath. All trace data has been collected on the Opteron test system with 64
cores grouped into 8 NUMA nodes as described in Section 6.3.1.

Figure 10.4a shows the timeline in its default mode, indicating the states each worker traverses
over time. At the beginning of the execution most workers are idle (light blue) due to the sequential
initialization of the matrix. This phase is followed by a parallel phase during which the actual
computations are carried out. All cores during this phase remain in task execution state until
program termination (dark blue), indicating that there is sufficient parallelism available. The
beginning and the end of the measurement interval are marked by a vertical green line with a
triangle at the top pointing to the right (beginning) and a vertical red line with a triangle pointing
to the left (end).

The majority of the tasks in this benchmark should have approximately the same duration
due to an identical amount of work, except for a few blocks at the borders of the matrix and
auxiliary tasks. However, upon selection of the measurement interval from the timeline to obtain
statistical data about task duration, a performance anomaly becomes apparent: the task duration
histogram shows an abnormal distribution with several peaks denoting groups of tasks with
different execution durations shown in Figure 10.4c.

215

Chapter 10: Performance analysis of task-parallel programs and run-times

4.31%

0%

Fr
ac

ti
on

 o
f

ta
sk

s

13M6.5M Task duration [cycles]

Figure 10.5: Distribution of the duration of the main computation tasks in k-means

Figure 10.4b shows the timeline in heatmap mode, in which tasks are presented with a different
intensity of red according to their execution time, from white for fast tasks to dark red for slow
tasks. The presence of large horizontal stripes with the same color indicates that there are no
variations of the task duration over time and suggests that the task duration directly depends on
the core executing the task. The shortest tasks are executed by cores 0 to 8 (almost white), which
are located next to the memory controller of NUMA Node 0. Tasks from cores associated to nodes
3 (cores 23 to 31), 5 (cores 40 to 47) and 7 (cores 56 to 63), which are at a distance of two hops from
node 0, have the highest duration (dark red). The shared matrix is thus located on Node 0, which
causes memory accesses to be the bottleneck in this application.

The trace file also contains hardware performance counter data for the number of requests
to local and remote memory controllers. On the Opteron platform, these are northbridge-wide
counters [11] that aggregate accesses of 8 cores sharing a memory controller. In the trace file, these
have been associated to the cores with the smallest identifiers, i.e. cores 0, 8, 16, 24, 32, 40, 48 and
56. Aftermath is able to combine the two counters for remote and local accesses to a derived metric
representing the ratio between local accesses and the total number of accesses. Figure 10.4d shows
the evolution of this metric extracted from the timeline view, with a vertical plotting range clipped
to the interval [0, 1.1]. For core 0, associated to Node 0, the value is close to one, indicating a high
fraction of local accesses. For the other cores the value is close to zero. Thus, most of the memory
accesses are remote, targeting Node 0, which finally explains the abnormal distribution of task
durations.

Using interleaved allocation as suggested in Section 6.2.2 partly solves this problem as distribut-
ing memory accesses across NUMA nodes reduces the contention on a specific memory controller.
After the modification of the benchmark, the task duration is much more uniform, which can be
confirmed by loading the trace of the modified benchmark into Aftermath and by verifying that
the abnormal distribution is no longer visible in the task duration histogram.

10.3.2 K-means clustering: branch mispredictions

As stated in Section 6.5, the k-means benchmark is a compute-intensive application whose
performance is mostly insensitive to data placement. However, during development of this
application, we encountered a performance anomaly that we first suspected to be related to
memory accesses, but which turned out to be related to branch mispredictions. Figure 10.5 shows
the task duration histogram after selection of the measurement interval for a trace recorded with
our first implementation of k-means executing on the Opteron platform. To focus the analysis on
the computation, all auxiliary tasks have been filtered out. Although all k-means computational
tasks have similar workloads, their execution time is not uniform as indicated by the peaks in the
histogram. Contrary to the seidel example above, there is no clear and simple relationship between
task duration and topology. Each core executes slow and fast tasks during the entire measurement
interval as shown in Aftermath’s timeline in heatmap mode in Figure 10.6a.

Selecting a slow task from the heatmap and clicking on the task name in the lower part of the
main window opens an editor with the task’s source code. The innermost loop of the task contains
a conditional update of the cluster associated to a point. This results in frequently changing

216

Chapter 10: Performance analysis of task-parallel programs and run-times

CPU 0

CPU 2

CPU 4

CPU 6

CPU 8

CPU 10

CPU 12

CPU 14

CPU 16

CPU 18

CPU 20

CPU 22

CPU 24

CPU 26

CPU 28

CPU 30

CPU 32

CPU 34

CPU 36

CPU 38

CPU 40

CPU 42

CPU 44

CPU 46

CPU 48

CPU 50

CPU 52

CPU 54

CPU 56

CPU 58

CPU 60

CPU 62

1
.5

2
0
e
+

1
0

1
.5

3
0
e
+

1
0

1
.5

4
0
e
+

1
0

1
.5

5
0
e
+

1
0

1
.5

6
0
e
+

1
0

1
.5

7
0
e
+

1
0

1
.5

8
0
e
+

1
0

1
.5

9
0
e
+

1
0

1
.6

0
0
e
+

1
0

1
.6

1
0
e
+

1
0

1
.6

2
0
e
+

1
0

1
.6

3
0
e
+

1
0

(a) The timeline in heatmap mode covering several
iterations

CPU 0

CPU 1

CPU 2

CPU 3

CPU 4

1
.4

4
6
e
+

1
0

1
.4

4
7
e
+

1
0

1
.4

4
8
e
+

1
0

1
.4

4
9
e
+

1
0

1
.4

5
0
e
+

1
0

1
.4

5
1
e
+

1
0

1
.4

5
2
e
+

1
0

1
.4

5
3
e
+

1
0

1
.4

5
4
e
+

1
0

1
.4

5
5
e
+

1
0

1
.4

5
6
e
+

1
0

1
.4

5
7
e
+

1
0

1
.4

5
8
e
+

1
0

1
.4

5
9
e
+

1
0

1
.4

6
0
e
+

1
0

1
.4

6
1
e
+

1
0

1
.4

6
2
e
+

1
0

Low misprediction rateLow misprediction rate

High misprediction rateHigh misprediction rate

(b) Zoom with branch misprediction rate

Figure 10.6: Heatmap view showing the task duration of k-means

26.93%

0%

Fr
ac

ti
on

 o
f

ta
sk

s

12.6M6.58M Task duration [cycles]

Figure 10.7: Distribution of the duration of the main computation tasks of the modified k-means benchmark

execution paths, which could significantly impact performance if the branch predictor is unable to
track the pattern.

Aftermath can display hardware performance counters from a trace file, either directly or after
having calculated the (discrete) derivative for each sampling interval. The latter option has been
used to generate the branch misprediction count of Figure 10.6b. As the hardware counters for each
core are sampled right before and right after task execution, the graph interpolates with a constant
value corresponding to the average misprediction rate for each task. The interval represented by
the vertical axis has automatically been adjusted to the minimum and the maximum number of
branch mispredictions per cycle and corresponds to the interval [0; 0.009215]. The combination of
the graph and the task duration heatmap immediately reveals a correlation: slow tasks (darker
shade of red) have a higher branch misprediction rate than faster tasks (lighter shade).

It is possible to transform the condition in the loop, making the cluster update unconditional,
and hoisting the check outside of the time-critical loop. The task duration distribution becomes
more uniform, which solves the performance anomaly. Figure 10.7 shows the task duration
histogram of the updated version of k-means 2. The number of peaks has been reduced to two close
peaks near 6.5Mcycles. The heatmap shown in Figure 10.8a also confirms that the distribution
is much more uniform. Figure 10.8b, showing the zoomed heatmap combined with the average
number of branch mispredictions during execution of a task 3, illustrates that the duration of a task
is not related to the number of branch mispredictions any longer.

The examples above for seidel and k-means are excellent examples of performance debugging
that does not involve any OpenStream-specific features of Aftermath. The only information that is
exploited in these analyses relates to the different states each worker traverses, the duration of tasks

2. The minimum and maximum duration indicated on the left and right side at the bottom are slightly different than
those of Figure 10.5. This is due to the fact that Aftermath automatically adjusts this interval according to the shortest and
the longest task within the selection on the timeline.

3. The interval represented by the vertical axis has been set to the same interval as in Figure 10.6b.

217

Chapter 10: Performance analysis of task-parallel programs and run-times

CPU 0

CPU 2

CPU 4

CPU 6

CPU 8

CPU 10

CPU 12

CPU 14

CPU 16

CPU 18

CPU 20

CPU 22

CPU 24

CPU 26

CPU 28

CPU 30

CPU 32

CPU 34

CPU 36

CPU 38

CPU 40

CPU 42

CPU 44

CPU 46

CPU 48

CPU 50

CPU 52

CPU 54

CPU 56

CPU 58

CPU 60

CPU 62

1
.1

0
0
e
+

1
0

1
.2

0
0
e
+

1
0

1
.3

0
0
e
+

1
0

1
.4

0
0
e
+

1
0

1
.5

0
0
e
+

1
0

1
.6

0
0
e
+

1
0

1
.7

0
0
e
+

1
0

1
.8

0
0
e
+

1
0

1
.9

0
0
e
+

1
0

2
.0

0
0
e
+

1
0

2
.1

0
0
e
+

1
0

2
.2

0
0
e
+

1
0

2
.3

0
0
e
+

1
0

(a) The timeline in heatmap mode covering several
iterations

CPU 0

CPU 1

CPU 2

CPU 3

CPU 4

1
.2

8
8
e
+

1
0

1
.2

8
9
e
+

1
0

1
.2

9
0
e
+

1
0

1
.2

9
1
e
+

1
0

1
.2

9
2
e
+

1
0

1
.2

9
3
e
+

1
0

1
.2

9
4
e
+

1
0

1
.2

9
5
e
+

1
0

1
.2

9
6
e
+

1
0

1
.2

9
7
e
+

1
0

1
.2

9
8
e
+

1
0

1
.2

9
9
e
+

1
0

1
.3

0
0
e
+

1
0

1
.3

0
1
e
+

1
0

1
.3

0
2
e
+

1
0

1
.3

0
3
e
+

1
0

Only low variations of the
misprediction rate

Only low variations of the
misprediction rate

(b) Zoom with branch misprediction rate

Figure 10.8: Heatmap view showing the task duration of the modified version of k-means with a lower
number of branch mispredictions

and hardware performance counters, which could be provided by any run-time for task-parallel
applications.

10.4 Debugging run-time performance
Aftermath has also played an essential role in performance debugging of the OpenStream run-

time and for the comprehension and implementation of the optimizations presented in this thesis.
The following part starts with an analysis of random work-stealing and shows how Aftermath
can be used to verify that topology-aware work-stealing, work-pushing and deferred allocation
effectively increase data locality. Afterwards, we use Aftermath to analyze the impact of broadcast
tables on the performance of the cholesky benchmark.

10.4.1 Deferred allocation and work-pushing

The first use case for performance debugging of the run-time that we present illustrates how
Aftermath exploits information on memory accesses from a trace file with topological information
on NUMA nodes. We first discuss the behavior of the dynamic single assignment implementation
of seidel with random work stealing and without work-pushing or deferred allocation and then
illustrate how work-pushing and deferred allocation improve the locality of memory accesses
resulting in higher performance.

Aftermath’s trace format supports the tracing of an arbitrary number of memory accesses as
well as an arbitrary number of instances of data structures providing information on relationship
between address regions and NUMA nodes. Each memory access in a trace consists of the start
address of the memory region that is accessed, its size and the access mode, i.e., whether the access
is reading or writing data. Data structures describing the mapping of addresses to NUMA nodes
simply consist of a start address, the size of the corresponding data region and the identifier of the
NUMA node. The memory region of each memory access must be included entirely in a single
data region. If a memory access relates to regions on two or more NUMA nodes, the access must
be traced as two or more memory accesses, each targeting only a single node.

Figure 10.9 shows multiple views of a trace of the seidel benchmark executed on the SGI
platform with a run-time configured for random work stealing and without work-pushing or
deferred allocation. The first view, showing the states of the 192 workers over time, indicates that
there is only a short phase at the beginning during which parallelism is low. Figure 10.9b shows
the timeline in task type mode. As described above in Section 10.2.1, each task construct in the
source code is associated to a different color and each pixel on the bar showing the activity of a
worker has the color of the construct that took most of the time within the interval represented by

218

Chapter 10: Performance analysis of task-parallel programs and run-times

CPU 0
CPU 5
CPU 10
CPU 15
CPU 20
CPU 25
CPU 30
CPU 35
CPU 40
CPU 45
CPU 50
CPU 55
CPU 60
CPU 65
CPU 70
CPU 75
CPU 80
CPU 85
CPU 90
CPU 95
CPU 100
CPU 105
CPU 110
CPU 115
CPU 120
CPU 125
CPU 130
CPU 135
CPU 140
CPU 145
CPU 150
CPU 155
CPU 160
CPU 165
CPU 170
CPU 175
CPU 180
CPU 185
CPU 190

6
.0

0
0
e
+

0
9

7
.0

0
0
e
+

0
9

8
.0

0
0
e
+

0
9

9
.0

0
0
e
+

0
9

1
.0

0
0
e
+

1
0

1
.1

0
0
e
+

1
0

1
.2

0
0
e
+

1
0

1
.3

0
0
e
+

1
0

(a) Run-time states

CPU 0
CPU 5
CPU 10
CPU 15
CPU 20
CPU 25
CPU 30
CPU 35
CPU 40
CPU 45
CPU 50
CPU 55
CPU 60
CPU 65
CPU 70
CPU 75
CPU 80
CPU 85
CPU 90
CPU 95
CPU 100
CPU 105
CPU 110
CPU 115
CPU 120
CPU 125
CPU 130
CPU 135
CPU 140
CPU 145
CPU 150
CPU 155
CPU 160
CPU 165
CPU 170
CPU 175
CPU 180
CPU 185
CPU 190

6
.0

0
0
e
+

0
9

7
.0

0
0
e
+

0
9

8
.0

0
0
e
+

0
9

9
.0

0
0
e
+

0
9

1
.0

0
0
e
+

1
0

1
.1

0
0
e
+

1
0

1
.2

0
0
e
+

1
0

1
.3

0
0
e
+

1
0

(b) Task types

CPU 0
CPU 5
CPU 10
CPU 15
CPU 20
CPU 25
CPU 30
CPU 35
CPU 40
CPU 45
CPU 50
CPU 55
CPU 60
CPU 65
CPU 70
CPU 75
CPU 80
CPU 85
CPU 90
CPU 95
CPU 100
CPU 105
CPU 110
CPU 115
CPU 120
CPU 125
CPU 130
CPU 135
CPU 140
CPU 145
CPU 150
CPU 155
CPU 160
CPU 165
CPU 170
CPU 175
CPU 180
CPU 185
CPU 190

6
.0

0
0
e
+

0
9

7
.0

0
0
e
+

0
9

8
.0

0
0
e
+

0
9

9
.0

0
0
e
+

0
9

1
.0

0
0
e
+

1
0

1
.1

0
0
e
+

1
0

1
.2

0
0
e
+

1
0

1
.3

0
0
e
+

1
0

(c) Read accesses to NUMA nodes

CPU 0
CPU 5
CPU 10
CPU 15
CPU 20
CPU 25
CPU 30
CPU 35
CPU 40
CPU 45
CPU 50
CPU 55
CPU 60
CPU 65
CPU 70
CPU 75
CPU 80
CPU 85
CPU 90
CPU 95
CPU 100
CPU 105
CPU 110
CPU 115
CPU 120
CPU 125
CPU 130
CPU 135
CPU 140
CPU 145
CPU 150
CPU 155
CPU 160
CPU 165
CPU 170
CPU 175
CPU 180
CPU 185
CPU 190

6
.0

0
0
e
+

0
9

7
.0

0
0
e
+

0
9

8
.0

0
0
e
+

0
9

9
.0

0
0
e
+

0
9

1
.0

0
0
e
+

1
0

1
.1

0
0
e
+

1
0

1
.2

0
0
e
+

1
0

1
.3

0
0
e
+

1
0

(d) Write accesses to NUMA nodes

CPU 0
CPU 5
CPU 10
CPU 15
CPU 20
CPU 25
CPU 30
CPU 35
CPU 40
CPU 45
CPU 50
CPU 55
CPU 60
CPU 65
CPU 70
CPU 75
CPU 80
CPU 85
CPU 90
CPU 95
CPU 100
CPU 105
CPU 110
CPU 115
CPU 120
CPU 125
CPU 130
CPU 135
CPU 140
CPU 145
CPU 150
CPU 155
CPU 160
CPU 165
CPU 170
CPU 175
CPU 180
CPU 185
CPU 190

6
.0

0
0
e
+

0
9

7
.0

0
0
e
+

0
9

8
.0

0
0
e
+

0
9

9
.0

0
0
e
+

0
9

1
.0

0
0
e
+

1
0

1
.1

0
0
e
+

1
0

1
.2

0
0
e
+

1
0

1
.3

0
0
e
+

1
0

(e) Locality of memory accesses

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0

(f) Communication matrix

Figure 10.9: Trace of seidel with random work-stealing and without work-pushing or deferred allocation

219

Chapter 10: Performance analysis of task-parallel programs and run-times

the pixel. Initialization tasks, copying data from the shared matrix to streams are pink, while the
main computational tasks are ocher. The phase with a low number of workers in the task execution
state is located between the initialization phase and the phase composed of main tasks and is due
to low parallelism at the beginning of the algorithm (cf. Section 6.1.1).

The locality of read accesses to main memory is illustrated in Figure 10.9c. For each worker in
this view and each interval represented by one pixel on the timeline, Aftermath first calculates
the set of tasks whose execution time overlaps with that interval. It then determines for each task
the set of read accesses that took place during execution of the task and calculates how much
data was accessed per node during the part of the task execution that overlaps with the pixel
interval. This calculation is based on the assumption that accesses are not instantaneous, but are
continuous operations that cover the whole task execution. When all tasks for the interval have
been considered, the tool determines from which NUMA node most of the data has been read.

As an example for the calculation of the amount of data accesses by a task consider Figure 10.10.
Assume that one pixel on the timeline represents 5.5Mcycles and that there are three tasks t1, t2
and t3 whose interval of execution overlaps with the pixel to be drawn. Aftermath assumes that
the memory accesses of the tasks are carried out continuously during the entire execution of a
task. Hence, for the interval of the pixel, it assumes that t1 reads 0.5 Mcycles

3 Mcycles · 128KiB from Node 5,
t2 reads 320KiB from Node 2 and that t3 does not perform any read access. As Node 2 represents
the node which provides most of the data that is accessed in the interval, the pixel in this example
would be drawn with the color associated to Node 2.

The untidy appearance of intervals of different colors in Figure 10.9c shows that there is no
clear relationship between the nodes targeted by read accesses and the cores accessing the data.
The same conclusion can be drawn for the locality of write accesses, illustrated in Figure 10.11b.
However, the views presented in Figure 10.9c and 10.9d only show qualitative information, but
do not reflect the locality of memory accesses quantitatively. For example, a task that reads only
a bit more than half of its input data from a remote node and the rest of the data from the local
node would be drawn using the color of the remote node, although a large fraction of memory
accesses are local. A view that is more suited to investigate the quantitative aspects of data locality
is the NUMA heatmap view, briefly introduced in Section 10.2.1, which uses different shades to
represent the amount of memory that is accessed locally, ranging from blue (entirely local) to pink
(entirely remote). The majority of the timeline component in this view shown in Figure 10.11c is
pink, indicating that most of the memory accesses are in fact accesses to remote nodes. The absence
of a clear relationship between the requesting nodes and the targeted nodes of memory accesses
can be confirmed by looking at the communication incidence matrix for the measurement interval
shown in Figure 10.9f. This graph captures for every pair of nodes how much data has been read
and written by the cores of one node that is stored in the memory of the other node. Ideally, the
matrix displays a sharp, diagonal pattern indicating that all memory accesses target the memory
controller of the same node as the requesting cores. However, the matrix in the example indicates
that all nodes communicate with all other nodes. The global statistics for the entire measurement
interval and all workers indicate that only 5.36% are local accesses.

Figure 10.11 shows the same views for the seidel benchmark after activation of topology-aware
work-stealing, work-pushing and deferred allocation. The views indicating the major nodes
accessed in read mode (Figure 10.11a) and write mode (Figure 10.11b) show that there is a clear
relationship between the cores accessing data and the targeted nodes. The timeline for all cores of
the same node (core 0 to 7, 8 to 15 and so on) have the same color almost throughout the entire
measurement interval. In addition, this color corresponds to the local node of the cores, indicating
that at least half of all data is stored on the local node. This is confirmed by Figure 10.11c, which is
almost entirely blue with only a few pink spots, which means that nearly 100% of data transfers
are local. The communication matrix of Figure 10.11d with a sharp, diagonal pattern confirms this.
Global statistics report that 97.94% of the data transfers found in the trace target local memory.

220

Chapter 10: Performance analysis of task-parallel programs and run-times

9 Time [Mcycles]

1 pixel
Write

256 kiB
Node 0

Read
128 kiB
Node 5

0 1 2 3 4 5 6 7 8

Read
64 kiB
Node 2

Write
128 kiB
Node 1

Read
256 kiB
Node 2 Write

128 kiB
Node 5

Accesses taken into account by the NUMA read mode

Figure 10.10: Example of memory accesses

CPU 0
CPU 5
CPU 10
CPU 15
CPU 20
CPU 25
CPU 30
CPU 35
CPU 40
CPU 45
CPU 50
CPU 55
CPU 60
CPU 65
CPU 70
CPU 75
CPU 80
CPU 85
CPU 90
CPU 95
CPU 100
CPU 105
CPU 110
CPU 115
CPU 120
CPU 125
CPU 130
CPU 135
CPU 140
CPU 145
CPU 150
CPU 155
CPU 160
CPU 165
CPU 170
CPU 175
CPU 180
CPU 185
CPU 190

7
.6

0
0
e
+

0
9

7
.7

0
0
e
+

0
9

7
.8

0
0
e
+

0
9

7
.9

0
0
e
+

0
9

8
.0

0
0
e
+

0
9

8
.1

0
0
e
+

0
9

8
.2

0
0
e
+

0
9

8
.3

0
0
e
+

0
9

8
.4

0
0
e
+

0
9

8
.5

0
0
e
+

0
9

8
.6

0
0
e
+

0
9

8
.7

0
0
e
+

0
9

8
.8

0
0
e
+

0
9

8
.9

0
0
e
+

0
9

9
.0

0
0
e
+

0
9

9
.1

0
0
e
+

0
9

9
.2

0
0
e
+

0
9

9
.3

0
0
e
+

0
9

9
.4

0
0
e
+

0
9

9
.5

0
0
e
+

0
9

9
.6

0
0
e
+

0
9

9
.7

0
0
e
+

0
9

9
.8

0
0
e
+

0
9

9
.9

0
0
e
+

0
9

1
.0

0
0
e
+

1
0

1
.0

1
0
e
+

1
0

(a) Read accesses to NUMA nodes

CPU 0
CPU 5
CPU 10
CPU 15
CPU 20
CPU 25
CPU 30
CPU 35
CPU 40
CPU 45
CPU 50
CPU 55
CPU 60
CPU 65
CPU 70
CPU 75
CPU 80
CPU 85
CPU 90
CPU 95
CPU 100
CPU 105
CPU 110
CPU 115
CPU 120
CPU 125
CPU 130
CPU 135
CPU 140
CPU 145
CPU 150
CPU 155
CPU 160
CPU 165
CPU 170
CPU 175
CPU 180
CPU 185
CPU 190

7
.6

0
0
e
+

0
9

7
.7

0
0
e
+

0
9

7
.8

0
0
e
+

0
9

7
.9

0
0
e
+

0
9

8
.0

0
0
e
+

0
9

8
.1

0
0
e
+

0
9

8
.2

0
0
e
+

0
9

8
.3

0
0
e
+

0
9

8
.4

0
0
e
+

0
9

8
.5

0
0
e
+

0
9

8
.6

0
0
e
+

0
9

8
.7

0
0
e
+

0
9

8
.8

0
0
e
+

0
9

8
.9

0
0
e
+

0
9

9
.0

0
0
e
+

0
9

9
.1

0
0
e
+

0
9

9
.2

0
0
e
+

0
9

9
.3

0
0
e
+

0
9

9
.4

0
0
e
+

0
9

9
.5

0
0
e
+

0
9

9
.6

0
0
e
+

0
9

9
.7

0
0
e
+

0
9

9
.8

0
0
e
+

0
9

9
.9

0
0
e
+

0
9

1
.0

0
0
e
+

1
0

1
.0

1
0
e
+

1
0

(b) Write accesses to NUMA nodes

CPU 0
CPU 5
CPU 10
CPU 15
CPU 20
CPU 25
CPU 30
CPU 35
CPU 40
CPU 45
CPU 50
CPU 55
CPU 60
CPU 65
CPU 70
CPU 75
CPU 80
CPU 85
CPU 90
CPU 95
CPU 100
CPU 105
CPU 110
CPU 115
CPU 120
CPU 125
CPU 130
CPU 135
CPU 140
CPU 145
CPU 150
CPU 155
CPU 160
CPU 165
CPU 170
CPU 175
CPU 180
CPU 185
CPU 190

7
.6

0
0
e
+

0
9

7
.7

0
0
e
+

0
9

7
.8

0
0
e
+

0
9

7
.9

0
0
e
+

0
9

8
.0

0
0
e
+

0
9

8
.1

0
0
e
+

0
9

8
.2

0
0
e
+

0
9

8
.3

0
0
e
+

0
9

8
.4

0
0
e
+

0
9

8
.5

0
0
e
+

0
9

8
.6

0
0
e
+

0
9

8
.7

0
0
e
+

0
9

8
.8

0
0
e
+

0
9

8
.9

0
0
e
+

0
9

9
.0

0
0
e
+

0
9

9
.1

0
0
e
+

0
9

9
.2

0
0
e
+

0
9

9
.3

0
0
e
+

0
9

9
.4

0
0
e
+

0
9

9
.5

0
0
e
+

0
9

9
.6

0
0
e
+

0
9

9
.7

0
0
e
+

0
9

9
.8

0
0
e
+

0
9

9
.9

0
0
e
+

0
9

1
.0

0
0
e
+

1
0

1
.0

1
0
e
+

1
0

(c) Locality of memory accesses

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0

(d) Communication matrix

Figure 10.11: Different views for a trace of seidel with topology-aware work-stealing, work-pushing and
deferred allocation

221

Chapter 10: Performance analysis of task-parallel programs and run-times

CPU 0
CPU 5
CPU 10
CPU 15
CPU 20
CPU 25
CPU 30
CPU 35
CPU 40
CPU 45
CPU 50
CPU 55
CPU 60
CPU 65
CPU 70
CPU 75
CPU 80
CPU 85
CPU 90
CPU 95
CPU 100
CPU 105
CPU 110
CPU 115
CPU 120
CPU 125
CPU 130
CPU 135
CPU 140
CPU 145
CPU 150
CPU 155
CPU 160
CPU 165
CPU 170
CPU 175
CPU 180
CPU 185
CPU 190

8
.7

0
0
e
+

1
0

8
.8

0
0
e
+

1
0

8
.9

0
0
e
+

1
0

9
.0

0
0
e
+

1
0

9
.1

0
0
e
+

1
0

9
.2

0
0
e
+

1
0

9
.3

0
0
e
+

1
0

9
.4

0
0
e
+

1
0

9
.5

0
0
e
+

1
0

9
.6

0
0
e
+

1
0

9
.7

0
0
e
+

1
0

9
.8

0
0
e
+

1
0

9
.9

0
0
e
+

1
0

1
.0

0
0
e
+

1
1

1
.0

1
0
e
+

1
1

1
.0

2
0
e
+

1
1

1
.0

3
0
e
+

1
1

1
.0

4
0
e
+

1
1

1
.0

5
0
e
+

1
1

1
.0

6
0
e
+

1
1

1
.0

7
0
e
+

1
1

1
.0

8
0
e
+

1
1

1
.0

9
0
e
+

1
1

1
.1

0
0
e
+

1
1

1
.1

1
0
e
+

1
1

1
.1

2
0
e
+

1
1

(a) Without broadcast tables

CPU 0
CPU 5
CPU 10
CPU 15
CPU 20
CPU 25
CPU 30
CPU 35
CPU 40
CPU 45
CPU 50
CPU 55
CPU 60
CPU 65
CPU 70
CPU 75
CPU 80
CPU 85
CPU 90
CPU 95
CPU 100
CPU 105
CPU 110
CPU 115
CPU 120
CPU 125
CPU 130
CPU 135
CPU 140
CPU 145
CPU 150
CPU 155
CPU 160
CPU 165
CPU 170
CPU 175
CPU 180
CPU 185
CPU 190

8
.9

0
0
e
+

1
0

9
.0

0
0
e
+

1
0

9
.1

0
0
e
+

1
0

9
.2

0
0
e
+

1
0

9
.3

0
0
e
+

1
0

Slow broadcasts
on the critical path

Slow broadcasts
on the critical path

(b) Without broadcast tables (zoom on broadcasts on the
critical path)

CPU 0
CPU 5
CPU 10
CPU 15
CPU 20
CPU 25
CPU 30
CPU 35
CPU 40
CPU 45
CPU 50
CPU 55
CPU 60
CPU 65
CPU 70
CPU 75
CPU 80
CPU 85
CPU 90
CPU 95
CPU 100
CPU 105
CPU 110
CPU 115
CPU 120
CPU 125
CPU 130
CPU 135
CPU 140
CPU 145
CPU 150
CPU 155
CPU 160
CPU 165
CPU 170
CPU 175
CPU 180
CPU 185
CPU 190

9
.0

4
0
e
+

1
0

9
.0

5
0
e
+

1
0

9
.0

6
0
e
+

1
0

9
.0

7
0
e
+

1
0

Slow broadcasts
on the critical path

(c) Without broadcast tables (zoom on a smaller set of
broadcasts on the critical path)

CPU 0
CPU 5
CPU 10
CPU 15
CPU 20
CPU 25
CPU 30
CPU 35
CPU 40
CPU 45
CPU 50
CPU 55
CPU 60
CPU 65
CPU 70
CPU 75
CPU 80
CPU 85
CPU 90
CPU 95
CPU 100
CPU 105
CPU 110
CPU 115
CPU 120
CPU 125
CPU 130
CPU 135
CPU 140
CPU 145
CPU 150
CPU 155
CPU 160
CPU 165
CPU 170
CPU 175
CPU 180
CPU 185
CPU 190

7
.8

0
0
e
+

1
0

7
.9

0
0
e
+

1
0

8
.0

0
0
e
+

1
0

8
.1

0
0
e
+

1
0

8
.2

0
0
e
+

1
0

8
.3

0
0
e
+

1
0

8
.4

0
0
e
+

1
0

8
.5

0
0
e
+

1
0

8
.6

0
0
e
+

1
0

8
.7

0
0
e
+

1
0

8
.8

0
0
e
+

1
0

8
.9

0
0
e
+

1
0

9
.0

0
0
e
+

1
0

9
.1

0
0
e
+

1
0

9
.2

0
0
e
+

1
0

9
.3

0
0
e
+

1
0

9
.4

0
0
e
+

1
0

(d) With broadcast tables (single copy per block)

Figure 10.12: Worker states for each core during execution of cholesky without and with broadcast tables

10.4.2 Broadcast tables

In the next example, we examine the impact of broadcast tables with a single copy presented in
Section 9.2 on the cholesky benchmark, also executing on the 192-core SGI system. Figure 10.12a
shows the activity of each worker during the measurement interval. This unzoomed view already
reveals the numerous broadcast phases, indicated by the dark red parts as well as multiple phases
during which most of the workers are idle, indicated by light blue. Aftermath reports in the
statistical view that only 58% of the measurement interval is spent in task execution. The time
spent on broadcasts represents 19% of the interval and 18% of the time workers are idle.

Another feature of Aftermath confirms this poor exploitation of the computing resources. By
creating a derived counter, whose samples represent how many workers were in task execution
state at the same time, the user is able to display the average parallelism over time. Figure 10.13a
shows the graph for this derived counter. Ideally, all the 192 cores of the machine are busy during
the entire measurement interval. The graph should thus display a steep increase to 192 at the
beginning and should only drop below 192 towards the end of the measurement interval. However,
the graph of Figure 10.13a has a different shape. The value of 192 is only reached a few times for
a short period. Most of the time, the number of workers that execute tasks in parallel remains
below 192 and often reaches values close to zero. Zooming further into the trace reveals that the
broadcasts are responsible for phases with low parallelism: Figure 10.12b shows several broadcasts
that are on the critical path. Figure 10.12c zooms on the first of these sets of broadcasts and clearly
shows that there is only little activity besides the broadcasts themselves.

By using broadcast tables with a single copy per broadcast, the time spent on task execution
during the measurement interval can be increased to 91%. Broadcasts only take less than 0.1% of
the time in this configuration and idle time can be reduced to about 4.5% of the execution time.

222

Chapter 10: Performance analysis of task-parallel programs and run-times

00

192192

(a) Without broadcast tables
00

192192

(b) With broadcast tables (single copy per block)

Figure 10.13: Number of workers in task execution state during execution of cholesky without and with
broadcast tables

Figure 10.12d shows the activity of all cores during the measurement interval. There are still
phases with few activity, but these can essentially be found at the beginning and at the end of the
execution when the number of tasks ready for execution is low due to limited parallelism of the
algorithm. Figure 10.13 summarizes how many workers are in task execution state in parallel. In
contrast to the graph without broadcast tables, the number of workers executing tasks in parallel
is near 192 almost during the whole measurement interval.

The examples above showed that Aftermath can be used to debug the performance of task-
parallel applications and run-time systems. However, many of the steps involved in this analysis
are repetitive and time-consuming due to the large number of potential causes for bottlenecks and
the large number of available metrics (e.g., hardware performance counters). The next section
presents a perspective to automate some of these tasks and to guide the user through the process
of performance analysis.

10.5 A perspective for the automation of performance analysis
Currently, the user has to detect bottlenecks manually, i.e., by selecting appropriate views

and by applying the filters that highlight a performance anomaly and emphasize its cause. For
example, if the user suspects that low performance is due to a high cache miss rate of a certain
type of tasks (e.g., tasks carrying out matrix multiplications), it is necessary to visualize the task
duration, to limit the view to tasks of that type, to inspect the cache miss rate of slow and fast
tasks and to develop the hypothesis of a correlation between task duration and the cache miss rate.
The user must repeat these steps for every potential source of performance anomalies. Some of
the steps in this process could be automated and the user could concentrate on the essential parts
of performance analysis. In this section, we illustrate two scenarios for automated performance
analysis. In the first scenario, the trace analysis tool analyzes the time spent in the different
run-time states and informs the user about insufficient parallelism or high overhead, while the
second scenario deals with the automatic detection of correlations between performance indicators.
Future versions of Aftermath could integrate these mechanisms and thus guide the user through
the process of performance analysis.

10.5.1 High-level analysis based on thresholds

Ideally, each core of the machine effectively contributes to the overall computation and spends
nearly all of its time in the task execution state. Assume that there are n cores and an interval of
a duration d. Let Texe be a user-defined threshold indicating the targeted fraction of time in the
task execution state; e.g., Texe = 0.95 indicates that at least 95% of the time should be spent in that
state. Let further De,i be the overall duration a core i spends in task execution state within the
interval. If the inequality

∑n
i=1De,i < Texe · n · d holds, there is not enough parallelism to saturate

the machine with running tasks.
The root cause for insufficient parallelism can be refined with further threshold-based analysis.

For example, if more than a fraction Tcreate is spent in the task creation state, task creation overhead
is likely to be too high or if a fraction of time Tidle is spent idling, then there might simply not be
enough parallelism exposed by the application or there might be a load balancing problem.

The exact rules and thresholds are to be determined in future work. However, these simple
examples show that basic high-level performance analysis can be carried out without intervention

223

Chapter 10: Performance analysis of task-parallel programs and run-times

of the programmer. This can be particularly convenient when comparing a larger number of
implementations of an application or combinations of optimizations in the run-time. A trace for
each of the configurations can be examined automatically and the results could be summarized in
a report.

10.5.2 Correlating performance indicators with task durations

The analysis above does not cover performance anomalies that occur during the execution
of tasks, such as the performance anomaly related to branch mispredictions of Section 10.3.2.
Hardware performance counters can provide insight on what happens during task execution.
Correlating per-task values for these counters with other performance indicators, e.g., correlating
the branch misprediction rate with the execution time, can help develop a hypothesis to explain the
anomaly. As shown in the examples, Aftermath already provides a generic interface for analysis
of arbitrary performance counters, but it is up to the user to select the appropriate event type, to
configure the run-time to capture hardware performance counter samples and to write the samples
to the trace file. Manually determining the relevant event types by correlating the per-task values
for each of the available counters with the execution time of tasks can be time-consuming due to
the multitude of events that can be monitored on modern architectures. Hence, automating this
process is highly desirable. We propose a method based on linear regression in order to determine
automatically whether a specific hardware event should be considered for performance analysis
and under which conditions it is relevant. This method can be outlined as follows:

1. Selection of a micro-architectural event that might be relevant (e.g., branch mispredictions,
cache misses or accesses to remote memory).

2. Execution of the application that is to be analyzed and generation of a trace file with hardware
performance counter samples for the selected event.

3. Calculation of per-task values for the duration and the increase of the number of the selected
micro-architectural events by analyzing the hardware performance counter samples in the
trace (e.g., the number of cache misses that occurred during execution of each task).

4. Analysis of the variation of the task execution time. This can be done by calculating the
coefficient of variation of the execution time and by comparing it to a threshold. If the
variation is sufficiently high, the analysis continues with the next step. If the variation is low,
a performance anomaly that shows up in a subset of all tasks is unlikely and the analysis
stops.

5. Correlation of the per-task values for the micro-architectural events with the task durations
using linear regression. If the coefficient of determination exceeds a user-defined threshold,
the correlation is considered to be relevant and the user is informed. Otherwise, the analysis
restarts at the first step with a different micro-architectural event.

A performance anomaly does not necessarily concern all types of tasks of the application and all
cores of the machine. For example, the performance anomaly related to branch mispredictions
above only affected main computational tasks and the performance problem of the seidel benchmark
described in Section 10.3.1 was only present on cores of nodes 1 to 7. Hence, steps 3, 4 and 5 should
be repeated for user-defined subsets of task types and cores.

As steps 1 and 2 involve the configuration of the run-time system and generation of the trace
and are thus specific to a particular implementation, the description below focuses on steps 3, 4
and 5.

Calculation of per-task hardware performance counter values

Hardware performance counter values are usually captured per core and first need to be
associated with tasks before they can be correlated with other performance indicators. Assume
that v(c, i, t) returns the absolute value of a counter c for core i at a time t. Determining how much
a value has changed during execution of a task is done by comparing v at the beginning Ts and
the end Te of the task. Figure 10.14 illustrates this for a counter cmisp indicating the number of
branch mispredictions and a counter ccyc counting the number of processor cycles. The number of

224

Chapter 10: Performance analysis of task-parallel programs and run-times

Time

Figure 10.14: Evolution of the values of hard-
ware counters for branch mispredictions (cmisp)
and cycles (ccyc) on core i

Time

Figure 10.15: Samples that do not exactly match
the beginning and end of a task

mispredictions generated by the task t2, is Nmisp,t2 = v(nmisp, i, Te)− v(cmisp, i, Ts) and the number
of cycles is Ncyc,t2 = v(ccyc, i, Te)− v(ccyc, i, Ts). Hence, the branch misprediction rate Rt2 of t2 is:

Rt2 =
Nmisp,t2

Ncyc,t2
=
v(nmisp, i, Te)− v(cmisp, i, Ts)

v(ccyc, i, Te)− v(ccyc, i, Ts)

The misprediction rates of t1 and t3, Rt1 and Rt3 , can be determined similarly.
The calculation of the misprediction rate above assumes that the number of branch mispre-

dictions and the number of cycles at Ts and Te are known. However, as hardware performance
counter data is not available as a continuous function, but as a set of samples, these values might
not be available directly in the trace file. Figure 10.15 shows the most frequent case, where the
timestamps Tsj and Tsj+1

of the nearest samples do not exactly match Ts and Te. However, assum-
ing that the values for each counter are monotonically increasing, it is possible to approximate the
required values through linear interpolation. For example, the value v(c, i, Ts) in the figure can be
approximated as:

v(c, i, Ts) ≈ Vsj +
(
Ts − Tsj

)
·
Vsj+1

− Vsj
Tsj+1

− Tsj
where Vsj is the value of c captured in the first sample and Vsj+1

is the value of the second sample.
The value for v(c, i, Te) the end of the task execution can be approximated similarly.

Correlation of performance indicators

We consider that a performance indicator is relevant for performance analysis if the variation
of task durations is sufficiently high according to the coefficient of variation and if the duration
correlates with the performance indicator according to a linear model. In Figure 10.14, the durations
di differ substantially and depend on the misprediction rates Rti with di ≈ α · Rti + β, α and
β being constant. Such relationships can easily be detected automatically by performing linear
regressions and by comparing the coefficients of determination to a threshold value.

As a simple example, consider the correlation between the misprediction rate and the duration
that has been determined manually in Section 10.3.2 by plotting the branch misprediction rate over
the timeline in heatmap mode. Figure 10.16 shows the duration of the main computation tasks in
the benchmark as a function of the rate of branch mispredictions. Outliers with an execution time
below 1Mcycles have been filtered out. The dashed line in the graph represents the regression line
and clearly indicates the linear correlation between the misprediction rate and the duration.

10.5.3 Status of the implementation

Aftermath currently provides only basic support for the techniques described above. High-level
analysis based on thresholds is supported, but requires manual interpretation by the user: after the
selection of an arbitrary interval from the timeline the tool shows the fraction of the time spent in
the different states, but whether these exceed the thresholds must be detected by the user.

For the correlation of performance indicators with task durations, Aftermath is able to calculate
per-task values using linear interpolation and supports the export of these values to a data file.
However, the analysis of the variation and linear regression must be performed by external tools

225

Chapter 10: Performance analysis of task-parallel programs and run-times

0

5M

10M

15M

20M

25M

30M

 0 1 2 3 4 5 6 7 8 9 10

Ta
sk

 d
u
ra

ti
o
n
 [

cy
cl

e
s]

Branch misprediction rate [mispredictions/kcycle]

Figure 10.16: Task duration as a function of the number of branch mispredictions per thousand cycles in
k-means

ran by the user. Also, the configuration of the run-time to sample specific micro-architectural
events and automation of the execution of the application whose traces are to be analyzed has not
yet been implemented.

10.6 Related Work
Visualization and analysis of trace files are common techniques, critical for performance analysis

and debugging in high performance computing, for which many tools have been developed. As
performance analysis is not the main topic of this thesis, providing a complete survey of this field
is out of the scope of this document. For the following overview of related work, we have selected
four representative tools, PARAPROF, PARAVER, VAMPIR, and VITE. We briefly explain why they
do not fully meet our requirements for performance analysis in the OpenStream project and thus
why we implemented Aftermath.

PARAVER [69] is a tool for interactive trace analysis, providing powerful filtering mechanisms
for different graph types and independent views on trace data. Earlier versions of OpenStream
included support for trace files in Paraver’s native format. However, the tool’s resource model
focuses on computation and does not model memory-related resources and task communication
patterns, which are essential to the characterization of performance anomalies on many-core
NUMA architectures.

PARAPROF [17], a profile visualization tool of TAU [78], is a retargetable framework for writing
trace analysis applications rather than a single tool for a specific type of trace files or performance
analysis. It provides a set of extensible components for data sources, data management, analysis
and visualization that can be used as a basis for new tools. The overlap between functionality
of existing components of Paraprof and those required for data-flow analysis in the OpenStream
project is small, such that the implementation cost for an OpenStream-specific tool using Paraprof
would have been close to the cost for Aftermath.

VAMPIR [67] is a well-known commercial tool that has been used in high performance com-
puting for almost two decades. It provides a rich user interface for interactive exploration and
analysis of huge traces and has a highly elaborated filter interface. Multiple connected views
with different granularity from cluster level to function calls are supported. But unlike Aftermath,
the tool is optimized for analysis of massively parallel applications based on message passing.
Neither NUMA resources nor tasks are modeled explicitly, making fine grained task-based and
memory-related analysis impossible.

VITE [1] is a freely available tool for trace-based analysis of parallel programs focusing on fast
rendering. However, the tool lacks support for NUMA topologies and analysis filters.

226

Chapter 10: Performance analysis of task-parallel programs and run-times

10.7 Summary and conclusions
After an analysis of the requirements for performance debugging of task-parallel applications

and run-time systems we presented Aftermath, a tool that we have implemented for trace visualiza-
tion and interactive trace analysis. We illustrated the strengths of Aftermath on several examples
based on genuine situations encountered during the development of the OpenStream run-time
system, the optimizations presented in this thesis and OpenStream benchmarks. Aftermath fulfills
the requirements mentioned at the beginning, and has proven invaluable when simultaneously
tracking the sources of performance anomalies in a task-parallel application and its supporting
execution environment.

While initially designed for our specific needs for the analysis of OpenStream, only some of the
graphs and metrics covered in this analysis are specific to OpenStream or to data-flow languages.
Aftermath can thus also be used for performance debugging of other task-parallel languages and
run-times. In future releases, we plan to add support for data dependences in OpenMP 4 similar
to the support for input buffers for OpenStream.

At the end of the chapter, we showed how a user can be guided through the process of
performance analysis by automating recurring tasks and by detecting certain types of performance
anomalies fully automatically. We presented a first technique for high-level analysis based on
thresholds that is able to detect insufficient parallelism and high overheads. The second technique
correlates performance indicators using linear regression and detects which performance indicators
are relevant for performance analysis. Aftermath provides basic support for a subset of the
mechanisms employed by these techniques but requires the intervention of the user. We plan to
fully integrate the above functionality in future releases. Other features developed in future work
are the support for very large trace files that do not fit into main memory and the development of
indexes that allow to calculate statistics without the need to traverse the entire trace.

227

Chapter 10: Performance analysis of task-parallel programs and run-times

228

11 Conclusion and perspectives

This chapter summarizes the work presented in this thesis and provides a conclusion on our
findings. The chapter closes with a discussion of directions and opportunities for future research.

11.1 Summary of the thesis
Power dissipation has become a driving factor in the processor industry and led to a shift

towards more energy efficiency designs integrating multiple cores on a single chip. Such multi-
core designs are now used in a wide variety of machines ranging from embedded systems to
high performance servers. The growth of the number of cores per machine is expected to carry
on and many-core systems with dozens or even hundreds of cores are emerging. Task-parallel
programming has become an increasingly popular approach to address productivity, scalability
and portability in these environments, but leaves decisions for the efficient mapping of parallelism
to an optimized run-time system. As many-core systems usually integrate multiple memory
controllers with non-uniform memory access, efficient strategies must provide both efficient
mappings of computations to cores and efficient mappings of data to memory controllers. As
shown in Chapter 2, only little work has been done on transparent, portable and fully automatic
on-line mapping mechanisms for task-parallel programs executing on many-core NUMA machines.
The purpose of this thesis is to investigate how such mappings can be implemented based on
information on point-to-point data dependences readily available in the run-time systems of
modern task-parallel programming frameworks. We explored the main factors on performance
and data locality and proposed fully automatic, transparent and portable run-time mechanisms for
the mapping of data to memory controllers and the mapping of tasks to cores.

As a representative for a modern task-parallel language with point-to-point data dependences,
we have chosen OpenStream, a data-flow extension to OpenMP based on the concepts of short-
lived, fine-grained tasks and streams. Communication and synchronization between tasks in this
model is achieved by accessing streams. The elements of streams become accessible to a task
through views, which appear as finite arrays within the task body. The actual synchronization
is carried out by the run-time by matching output views with input views on the same streams.
Chapter 3 provided an overview of the concepts of OpenStream, its syntax and its execution model.
The main formal construct for OpenStream programs used throughout this thesis are task graphs,
capturing the producer-consumer relationships of an OpenStream application.

As efficient mechanisms for data-aware scheduling and memory allocation require a NUMA-
aware run-time, we investigated in Chapter 4 how a run-time can determine the placement of data

Chapter 11: Conclusion and perspectives

on nodes efficiently and how it can be provided with fine-grained control over memory allocation
and data placement. The focus on this chapter lay on the integration of these techniques with
the default first-touch data placement mechanism of many operating systems and the avoidance
of frequent time-consuming system calls. We introduced input buffers that store the stream
elements read by a task and described methods for low-overhead placement and low-overhead
determination of the placement of these buffers.

In Chapter 5, we introduced dynamic single assignment to gain control over the placement
of application data and to be able to determine its placement. In this programming style, tasks
communicate and synchronize exclusively using streams, such that all application data is stored in
streams whose data is in turn stored in input buffers. Through the placement of input buffers the
run-time has full control over data placement of the entire application and is able to determine the
working set of each task reliably before a task executes.

The experimental setup for this thesis was given in Chapter 6. This included a description of
a set of high performance scientific benchmarks implemented using dynamic single assignment,
a description of the hardware and software environment and a description of the methodology
used for the experiments. We introduced three baselines for the benchmarks, namely a dynamic
single assignment baseline, a shared memory baseline implemented using token synchronization
in which streams are only used to enforce data dependences and a sequential baseline that does
not make use of OpenStream. We characterized the memory access behavior of the dynamic single
assignment versions to classify the benchmarks into memory-bound applications and cache-bound
applications.

Chapter 7 introduced two scheduling techniques that aim at improving the locality of accesses
to main memory. The first of these techniques is work-pushing, which transfers a task to a core
associated to the node that contains the data that will be accessed by the task. This mechanism
heavily relies on information on the working set of tasks derived from accesses to stream elements
in dynamic single assignment. The choice of the target core depends on a heuristic. We evaluated
the input only heuristic, which transfers a task to a core of the node containing the majority of its
input data, the output only which chooses a core on the node containing the majority of the tasks
output buffers and the weighted heuristic, which takes into account the placement of both input
and output buffers. As a complementary technique, we proposed a second scheduling mecha-
nism called topology-aware work-stealing, which acts as an architecture-aware load balancing
mechanism favoring steals from nearby cores in the memory hierarchy. The evaluation of the
scheduling optimizations on the benchmarks of Chapter 6 showed that the locality of memory
accesses could be improved significantly, resulting in speedups for memory-bound applications
of up to 2.36× on 192 cores grouped into 24 NUMA nodes compared to random work-stealing
without work-pushing.

Work-pushing reacts to a given data placement resulting from local allocations and the interplay
of initial task placement, task creations and work-stealing. To decouple data placement from the
control program, from initial data placement and to react to work-stealing, we introduced deferred
allocation in Chapter 8. The key concept of this mechanism is to delay the allocation of input
buffers from task creation to the time the producers of a task become ready for execution. This
allows the run-time to place buffers according to the node on which the producers are executed
and prevents input buffers from being placed at task creation. The results are a reduced memory
footprint, increased data locality and improved load balancing across memory controllers. The
approach can be combined with the input only heuristic for work-pushing as well as topology-
aware work-stealing and yields speedups of up to 3.57× on 192 cores grouped into 24 NUMA
nodes compared to a run-time with random work-stealing and using neither work-pushing nor
deferred allocation.

Broadcasts, in which the data of a producer is read by multiple readers also benefits from
work-pushing, topology-aware work-stealing and deferred allocation, but suffers from a high
overhead in time and the memory footprint for copying data to all readers. These issues were
addressed in Chapter 9, introducing broadcast tables. Broadcast tables allow the readers of a
broadcast to share a single input buffer, keeping the amount of memory required for a broadcast

230

Chapter 11: Conclusion and perspectives

constant and avoiding the overhead on execution time for copying the data of the broadcast to all
readers. The evaluation on the cholesky benchmark, which uses broadcasts extensively, showed
that the memory footprint and the execution time could be decreased by more than an order
of magnitude compared to the default broadcast mechanism without any of the optimizations
of previous chapters. We showed that using broadcast tables, OpenStream is able to match the
performance of state-of-the-art high performance implementations for Cholesky Factorization. To
increase the locality of memory accesses during broadcasts, we added a mechanism to broadcast
tables that creates on-demand copies on the NUMA nodes executing the readers of a broadcast.
We showed that this strategy can increase the locality of memory accesses significantly, but due to
the high cache hit rate of the cholesky benchmark the improvement of the locality does not result in
improved performance for this benchmark.

In the last chapter, we presented Aftermath, our tool for trace-based performance analysis and
visualization. We have used this tool extensively for performance debugging of the OpenStream
run-time, in particular during the development of the optimizations presented in this thesis, as
well as for performance debugging of the benchmarks presented in Chapter 6. Although we
have originally implemented the tool specifically for OpenStream, many of its concepts apply
to task-parallel applications and run-time systems in general. As a perspective for future work,
we presented two approaches for automating recurring tasks and guiding the user through the
process of performance analysis. The first of these approaches detects insufficient parallelism and
high overheads, while the second approach identifies performance indicators that are relevant for
performance analysis.

11.2 Contributions
The contributions of this thesis can be grouped into three categories. Contributions belonging to

the first category are the key contributions of this thesis. The second category consists of technical
concepts that form the basis for NUMA-aware scheduling and memory allocation. Practical
contributions that are the result of the implementation of the concepts presented in this thesis or
that helped during their development are summarized in the third category of contributions.

11.2.1 Key contributions

The key contributions of this thesis are mechanisms for efficient and portable, on-line placement
of tasks and data for task-parallel applications executing on many-core systems. The proposed
scheduling mechanisms are called work-pushing and topology-aware work-stealing, while the
method for data placement is named deferred allocation. For broadcasts we proposed broadcast
tables. All of the techniques were evaluated on a set of scientific benchmarks.

Work-pushing and topology-aware work-stealing (Chapter 7) We proposed work-pushing, a
data-aware and NUMA-aware scheduling mechanism for task-parallel application that transfers
tasks to cores associated to the nodes that contain the data that will be accessed by the tasks during
their execution. The decision to which core a task is transferred is taken before the task is executed
and is based on precise knowledge on the placement of the task’s working set. This knowledge
is derived from point-to-point data dependences readily available in the run-times of modern
task-parallel languages and an efficient memory-management layer that caches information on
data placement. Unlike existing approaches for NUMA-aware scheduling of tasks, work-pushing
neither relies on a specific structure of the computations carried out by the task-parallel application,
nor on specific types of data structures and does not require profiling. The approach thus supports
a wide variety of applications. As work-pushing operates at execution time, it is able to react to
dynamic changes of the program behavior. The approach is entirely transparent to the application
and is carried out fully automatically.

We also introduced topology-aware work-stealing as a complementary technique to work-
pushing for load balancing, stealing tasks from an incrementally widening neighborhood with
respect to the memory hierarchy. This mechanism is similar to hierarchical work-stealing and relies

231

Chapter 11: Conclusion and perspectives

on a static description of the machine topology describing the levels of the memory hierarchy and
the siblings of each core of each level.

Deferred allocation for the NUMA-aware management of task input buffers (Chapter 8) We
proposed deferred allocation, a technique that delays the allocation of an input buffer of a task
until the node of the producer writing to this buffer is known. Similar to the decisions for task
scheduling above, deferred allocation relies on precise knowledge on data accesses of each task
specified by point-to-point data dependences available in the run-time. Unlike other approaches for
data placement, deferred allocation neither represents a static partitioning of the data nor migrates
data. The principles of dynamic single assignment allow the run-time to choose a different node to
store data each time it is passed from one task to another, allowing the run-time to react to dynamic
changes in program behavior.

Broadcast tables for NUMA-aware broadcasts (Chapter 9) We proposed broadcast tables, a
NUMA-aware technique to broadcast data produced by a single task to multiple readers. By
sharing a single input buffer for all readers, this approach compensates the large amount of
memory and the time spent on copying data for the distribution of broadcast data when using a
naive implementation of dynamic single assignment. We also introduced broadcast tables with
on-demand copies on nodes executing the readers of a broadcast, resulting in a significant increase
of the data locality.

Experimental validation of the key contributions (Chapters 7, 8 and 9) We evaluated all of the
techniques above on a set of high performance scientific benchmarks executing on two many-core
NUMA platforms with 64 cores (8 NUMA nodes) and 192 cores (24 NUMA nodes), respectively.
We demonstrated that work-pushing can increase the fraction of memory accesses targeting
local memory above 90% and speed up execution by a factor of up to 2.36× compared to the
parallel baseline with random work-stealing. The speedup over the shared memory baseline with
interleaved allocation over all memory controllers of the machine can be as high as 2.50×. Deferred
allocation also results in significant improvements on data locality and can speed up execution
by up to 3.57× compared to random work-stealing without work-pushing. The speedup over the
shared memory baseline can be as high as 4.17×.

The use of broadcast tables can reduce the memory footprint as well as the execution time of
Cholesky Factorization by more than one order of magnitude. We showed that the OpenStream
implementation matches the performance of two state-of-the-art parallel implementations of
Cholesky Factorization provided by PLASMA and the INTEL MATH KERNEL LIBRARY.

11.2.2 Contributions that form the theoretical and technical basis for the key contributions

The following contributions from the theoretical and technical base required for the main con-
tributions above. The identification of factors with an influence on data locality and performance
form the basis for the development of techniques for data and task placement. From these findings
we derived work-pushing, topology-aware work-stealing, deferred allocation and broadcast tables.
The technical support for these techniques is provided by the second contribution, which consists
in the concepts for NUMA-aware run-time systems.

Identification and analysis of factors with an influence on data locality, the memory footprint
and performance (Chapters 4, 5, 7, 8 and 9) Throughout this thesis we identified and analyzed
factors with an influence on data locality, on the memory footprint of an application and on
performance. These are:

– the interaction between the run-time and the operating system during memory allocation
and placement of pages on nodes,

– the structure of the task graph, the order of creation of tasks by the control program and the
order in which tasks are executed,

– parallelism in the control program creating all tasks,
– initial placement of input buffers and
– steals by remote workers upon work-stealing.

232

Chapter 11: Conclusion and perspectives

We illustrated the influence of these factors on examples and quantified the impact of a subset of
them on synthetic benchmarks.

Concepts for NUMA-aware run-times for task-parallel applications (Chapter 4) We analyzed
first-touch allocation, the default mechanism of many operating systems for memory allocation
and proposed a NUMA-aware memory management layer based on this mechanism for run-time
systems of task-parallel languages. The key factor for efficiency in this solution are NUMA-aware
memory pools, which reduce of the number of time-consuming system calls by reusing buffers
that have been allocated from the operating system and by caching information on data placement
in small metadata sections in front of these buffers. Fine-grained control over data placement is
achieved by allocating a buffer of the requested size from a memory pool associated to the target
node.

11.2.3 Practical contributions

The contributions below are the result of the practical evaluation of the scientific concepts,
but do not represent purely scientific contributions on their own. However, as the utility of these
contributions goes beyond the prototyping of scientific concepts, we present them separately.

Integration into the run-time of a state-of-the-art task-parallel language We implemented and
integrated the techniques for NUMA-aware allocation and the determination of data placement
of Chapter 4 as well as work-pushing, topology-aware work-stealing, deferred allocation and
broadcast tables into the run-time of OpenStream. Our contributions to the run-time and the
compiler have been integrated into the official release of OpenStream.

A set of high performance scientific applications implemented using OpenStream (Chapter 6)
We implemented a set of high performance, scientific benchmarks using OpenStream, based on
dynamic single assignment presented in Chapter 5. These are:

– seidel, a five point two-dimensional, iterative stencil operating on a two-dimensional matrix
of double precision floating point elements,

– jacobi-1d, a three point one-dimensional iterative stencil operating on a vector double preci-
sion floating point elements,

– jacobi-2d a five point two-dimensional iterative stencil operating on a two-dimensional matrix
of double precision floating point elements,

– jacobi-3d, a seven point three-dimensional iterative stencil operating on a three-dimensional
matrix of double precision floating point elements,

– blur-roberts, a benchmark for image processing that implements a blur filter, followed by an
edge detection using the Roberts Cross Operator,

– bitonic, a bitonic sorting network capable of sorting 2N arbitrary 64-bit integers,
– cholesky, performing a Cholesky Factorization on a symmetric, positive definite matrix of

double precision floating point values and
– k-means that partitions a set of n-dimensional points into k clusters using the K-means

algorithm.
All of these benchmarks except cholesky were also implemented as a shared memory version based
on token synchronization as well as a sequential version. Future versions of the OpenStream
run-time can be evaluated using these benchmarks.

Aftermath, a tool for trace-based performance analysis and visualization We developed After-
math, a tool for trace-based off-line performance analysis and visualization and used this tool
extensively during the work for this thesis to understand the aspects with an influence on data
locality and performance, to debug the performance of the run-time system, to develop the ap-
plications used for the evaluation of our concepts and to validate our concepts for data and task
placement. Although the tool has been designed primarily for OpenStream programs and the
OpenStream run-time, many of its concepts apply to task-parallel programs and run-times in
general. As a valid trace file does not necessarily have to contain OpenStream-specific information,
the tool can already be used for the analysis of other task-parallel applications and run-times.

233

Chapter 11: Conclusion and perspectives

11.3 Conclusions
From the analyses and the experimental results presented in this thesis, we draw the following

conclusions regarding task and data placement.

– By exploiting point-to-point data dependences, readily available in the run-time systems of
modern task-parallel languages it is possible to determine the working set of tasks and the
placement of the working set on NUMA nodes reliably and efficiently.

– Run-time systems of task-parallel languages can be provided with fine-grained and efficient
control over the placement of application data.

– Many static aspects (e.g., partitioning of data among tasks) and a multitude of dynamic
events (e.g., the order of task creation, load balancing, interaction with the operating system)
have a strong influence on the memory footprint, the data locality and the performance of
task-parallel applications.

– It is possible to provide transparent, fully automatic and dynamic run-time techniques
for data and task placement improving data locality and performance of memory-bound
applications executing on many-core NUMA machines.

– The performance improvements of task and data placement are higher for larger machines
with more cores and a higher number of memory controllers.

This leads us to more general conclusions on task-parallel applications and run-times, in particular:

– task parallel programming allows for the efficient exploitation of the computing resources
and the memory bandwidth of many-core NUMA systems.

– data-flow programming can be beneficial for the efficient exploitation of shared memory
many-core NUMA systems and outperform shared memory implementations.

In the remainder of this chapter, we discuss directions for future research, starting with ongoing
work with preliminary results.

11.4 Future work and perspectives
The work on this thesis lead to a multitude of opportunities for future research. The following

axes of research seem to be the most appealing and promising opportunities to us.

Control over the memory footprint through automatic throttling at task creation A side effect
of step-by-step construction of a dynamic task graph by a parallel control program is that the
maximum number of co-existing tasks can be substantially smaller compared to a sequential
control program. For example, when using a sequential control program to construct a chain of
n dependent tasks t0, . . ., tn−1, the maximum number of tasks that might co-exist is n. Using
a parallel control program in which each task ti creates ti+2 as proposed in Section 5.5.5, the
maximum number of co-existing tasks is only two. As the memory footprint grows linearly with
the number of co-existing tasks, developing a control program that limits the number of co-existing
tasks can be essential for large task graphs to prevent an application to exceed the amount of
available main memory. However, in contrast to the trivial example of a chain of dependent tasks,
the development of a control program for large task graphs with complex dependences might
involve a trade-off between parallelism and the number of co-existing tasks. The development of
an appropriate control program is a complex task and represents a burden on the programmer,
such that automatic throttling of task creations is desirable. However, such a mechanism must
take into account the structure of the task graph as naive throttling might result in deadlocks due
to the fact that a task remains blocked if a subset of its consumers has not been created.

Reducing the memory footprint and increasing cache utilization As the memory footprint
plays an important role for the performance of task-parallel applications, it is crucial to keep it
as low as possible. The inout_reuse clause presented in Section 8.5 is one possibility to reduce
the size of the working set of a task, resulting in better utilization of caches, and to reduce the

234

Chapter 11: Conclusion and perspectives

application’s global memory footprint. However, to be effective, this clause requires a trade-off
between data locality and the overhead for copying when migrating data from one node to another.
Early results for the performance of applications using this clause showed that the overhead for
copies is likely to cancel the performance improvement of increased locality. One way to mask this
delay could be the specification of an alternate implementation for each task using the inout_reuse
clause that relies on dynamic single assignment and to let the run-time choose between the two
versions of a task. If the producer and a consumer execute on cores of the same node, the run-time
would choose the version with the inout_reuse clause and in case of a migration the dynamic
single assignment version reading from one node and writing to the target node would be chosen.

However, there are many other aspects of program execution have an influence on the footprint,
which we did not explore in this thesis (e.g., the order of task execution). Future concepts for
task-parallel run-times could include algorithms that estimate the footprint for multiple orders
of task executions based on deeper inspection of the task graph and choose the order with the
smallest memory footprint.

Software prefetching of input data Compulsory cache misses at the beginning of the execution
of a task can have a serious impact on performance as they might stall the executing core during
the execution of instructions on the critical path of the task. One possibility to reduce the number
of these misses is to fetch the task’s input data to a cache by executing appropriate prefetch
instructions before it starts execution. As dynamic single assignment provides the run-time with
the ability to determine the working set of a task before it is executed, prefetching could be carried
out automatically by th run-time. However, aggressive prefetching might lead to cache pollution
and evict data from the cache that is referenced by tasks executing on cores sharing the cache. In
addition, the probability that the input data of a task is still present in the cache when the task starts
execution highly depends on the order of task execution. The conditions under which software
prefetching is effective are to be determined in future work.

Dynamic adjustment of the task granularity Task granularity, i.e., how much data is processed
by each task, has a strong influence on the amount of available parallelism, on the overhead for inter-
task communication as well as on the exploitation of the memory hierarchy. The optimal granularity
can therefore vary between different applications and machines. Currently, the programmer has
to choose and implement task granularity manually. If an application should provide multiple
granularities, the programmer must develop a parametric model that allows the user to choose a
granularity at execution time (e.g., as in Section 5.3.1). While this is already a challenging task for
applications with regularly-structured parallelism, the implementation of such a model is even
more complicated for applications with irregular parallelism and less regularly-structured task
graphs. Ideally, the run-time is able to trade-off the overhead for inter-task communication, the
exploitation of the memory hierarchy and parallelism by adjusting the granularity automatically.
An approach towards this solution is to let the programmer specify the program with a very
fine-grained granularity and to dynamically fuse tasks at execution time in the run-time.

Improving the performance of cache-bound applications The mechanisms for task and data
placement presented in this thesis mainly improve performance by reducing the amount of accesses
to remote memory. The performance of cache-bound applications remains unaffected by these
optimizations. In future work, we would like to investigate techniques for cache-aware scheduling
and cache-aware memory allocation for task-parallel applications that improve the performance of
cache-bound applications. The development and analysis of such concepts is considerably more
challenging due to frequent changes of the contents of each cache. Hence, a method for optimized
task placement must be able to estimate whether the data needed by the task that becomes ready is
still available in a cache or if the data must be fetched from main memory.

Validation on applications with irregular parallelism All of the applications studied in this
thesis display regular patterns of parallelism. However, none out optimizations relies on a specific
pattern of parallelism. To demonstrate that our approaches also apply to applications with irregular
patterns for parallelism additional benchmarks are needed.

235

Chapter 11: Conclusion and perspectives

Integration into other task-parallel run-times To emphasize the portability of our solutions
it would be interesting to integrate them into run-times of other task-parallel languages. The
recently appeared OpenMP 4 standard adds point-to-point data dependences on memory regions
to OpenMP tasks. Run-times implementing this standard are thus excellent candidates for the
implementation of our concepts.

Comparison with shared memory implementations using static placement The baseline for
shared memory for the experimental evaluation uses interleaved allocation across all nodes of
the machine. While this solution yields an excellent distribution of requests to main memory and
thus high memory bandwidth, it only achieves poor data locality. For a totally fair comparison
between dynamic single assignment and shared memory versions, hand-tuned shared memory
implementations with manual data placement are needed.

Hybrid static / dynamic approaches for optimization The solutions presented in this thesis all
operate dynamically at execution time. However, the work in this thesis also showed that many
static aspects have an influence on performance. As mentioned above, the granularity of the
data processed by tasks has an influence on the available parallelism, cache hit rates and the
overhead for task creation. Hybrid approaches combining optimizations at compile time, such as
the automatic partitioning of regular data structures among tasks, with dynamic optimizations at
execution time could improve performance significantly and reduce the burden of the programmer
to take decisions for static optimizations manually.

236

Bibliography

[1] http://vite.gforge.inria.fr/. Accessed 10/2013.

[2] Intel Math Kernel Library. https://software.intel.com/en-us/intel-mkl, ac-
cessed 01/2015.

[3] Intel Xeon Processor E5-4600 Series. http://download.intel.com/support/
processors/xeon/sb/xeon_E5-4600.pdf, accessed 02/2015.

[4] MaMI: Marcel memory interface. http://runtime.bordeaux.inria.fr/MaMI/, ac-
cessed 10/2014.

[5] METIS. http://pdos.csail.mit.edu/metis/, accessed 11/2014.

[6] NAS Parallel Benchmarks. http://www.nas.nasa.gov/publications/npb.html, ac-
cessed 11/2014.

[7] Omni Compiler Project. http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/, ac-
cessed 11/2014.

[8] Parallelism in the Intel Math Kernel Library. https://software.intel.com/en-us/
articles/parallelism-in-the-intel-math-kernel-library, accessed 02/2015.

[9] PARSEC. http://parsec.cs.princeton.edu/, accessed 11/2014.

[10] The CSU Face Identification Evaluation System, Version 5.1. http://www.cs.colostate.
edu/evalfacerec/algorithms5.php, accessed 11/2014.

[11] AMD. BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 15h Models 00h-0Fh Proces-
sors, 2013. http://support.amd.com/us/Processor_TechDocs/42301_15h_Mod_
00h-0Fh_BKDG.pdf, accessed 09/2014.

[12] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 3rd edition, 1999.

[13] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John Kubia-
towicz, Nelson Morgan, David Patterson, Koushik Sen, John Wawrzynek, David Wessel, and
Katherine Yelick. A view of the parallel computing landscape. Commun. ACM, 52(10):56–67,
October 2009.

[14] Vishal Aslot, Max J. Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley B. Jones, and Bodo
Parady. Specomp: A new benchmark suite for measuring parallel computer performance.
In Proceedings of the International Workshop on OpenMP Applications and Tools: OpenMP Shared
Memory Parallel Programming, WOMPAT ’01, pages 1–10, London, UK, UK, 2001. Springer-
Verlag.

[15] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, and V. Venkatakrishnan. The NAS parallel
benchmarks. Technical report, 1994.

[16] K. E. Batcher. Sorting networks and their applications. In Proc. of the April 30–May 2, 1968,
Spring joint Computer Conf., AFIPS ’68 (Spring), pages 307–314, New York, NY, USA, 1968.
ACM.

http://vite.gforge.inria.fr/
https://software.intel.com/en-us/intel-mkl
http://download.intel.com/support/processors/xeon/sb/xeon_E5-4600.pdf
http://download.intel.com/support/processors/xeon/sb/xeon_E5-4600.pdf
http://runtime.bordeaux.inria.fr/MaMI/
http://pdos.csail.mit.edu/metis/
http://www.nas.nasa.gov/publications/npb.html
http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/
https://software.intel.com/en-us/articles/parallelism-in-the-intel-math-kernel-library
https://software.intel.com/en-us/articles/parallelism-in-the-intel-math-kernel-library
http://parsec.cs.princeton.edu/
http://www.cs.colostate.edu/evalfacerec/algorithms5.php
http://www.cs.colostate.edu/evalfacerec/algorithms5.php
http://support.amd.com/us/Processor_TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf
http://support.amd.com/us/Processor_TechDocs/42301_15h_Mod_00h-0Fh_BKDG.pdf

BIBLIOGRAPHY

[17] Robert Bell, Allen D Malony, and Sameer Shende. Paraprof: A portable, extensible, and
scalable tool for parallel performance profile analysis. In Euro-Par 2003 Par. Processing, pages
17–26. Springer, 2003.

[18] Christian Bienia and Kai Li. Parsec 2.0: A new benchmark suite for chip-multiprocessors. In
Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simulation, June 2009.

[19] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris, C.A. Nelson, and C.D. Offner. Extend-
ing openmp for numa machines. In Supercomputing, ACM/IEEE 2000 Conference, pages 48–48,
Nov 2000.

[20] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux,
L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C. Whaley. An updated
set of basic linear algebra subprograms (BLAS). 28:135–151, 2001.

[21] Susan Blackford and Jack J. Dongarra. Installation guide for LAPACK. Technical Report 41,
LAPACK Working Note, June 1999. Originally released March 1992.

[22] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H.
Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system. In Proc. of the 5th
ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming, PPOPP ’95, pages
207–216, New York, NY, USA, 1995. ACM.

[23] OpenMP Architecture Review Board. OpenMP Application Program Interface Version 3.0, May
2008.

[24] OpenMP Architecture Review Board. OpenMP Application Program Interface Version 3.1, 2011.

[25] OpenMP Architecture Review Board. OpenMP Application Program Interface Version 4.0, July
2013.

[26] Shekhar Borkar. Thousand core chips: A technology perspective. In Proceedings of the 44th
Annual Design Automation Conference, DAC ’07, pages 746–749, New York, NY, USA, 2007.
ACM.

[27] Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Commun. ACM,
54(5):67–77, May 2011.

[28] François Broquedis, Thierry Gautier, and Vincent Danjean. LIBKOMP, an efficient OpenMP
runtime system for both fork-join and data flow paradigms. In Proc. of the 8th Intl. Conf.
on OpenMP in a Heterogeneous World, IWOMP’12, pages 102–115, Berlin, Heidelberg, 2012.
Springer-Verlag.

[29] François Broquedis, Olivier Aumage, Brice Goglin, Samuel Thibault, P-A Wacrenier, and Ray-
mond Namyst. Structuring the execution of openmp applications for multicore architectures.
In Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pages 1–10.
IEEE, 2010.

[30] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento, Brice Goglin,
Guillaume Mercier, Samuel Thibault, and Raymond Namyst. Hwloc: A Generic Framework
for Managing Hardware Affinities in HPC Applications. In IEEE, editor, PDP 2010 - The 18th
Euromicro International Conference on Parallel, Distributed and Network-Based Computing, Pisa,
Italie, February 2010.

[31] François Broquedis, Nathalie Furmento, Brice Goglin, Pierre-André Wacrenier, and Raymond
Namyst. ForestGOMP: An efficient OpenMP environment for NUMA architectures. Intl. J. of
Parallel Programming, 38(5):418–439, 2010.

[32] François Broquedis, Nathalie Furmento, Brice Goglin, Raymond Namyst, and Pierre-André
Wacrenier. Dynamic task and data placement over numa architectures: An openmp runtime
perspective. In Matthias S. Müller, Bronis R. de Supinski, and Barbara M. Chapman, editors,
Evolving OpenMP in an Age of Extreme Parallelism, volume 5568 of Lecture Notes in Computer
Science, pages 79–92. Springer Berlin Heidelberg, 2009.

238

BIBLIOGRAPHY

[33] Zoran Budimlic̀, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney, Ryan New-
ton, Jens Palsberg, David Peixotto, Vivek Sarkar, Frank Schlimbach, and Sagnak Taşirlar.
Concurrent collections. Scientific Programming, 18:203—217, 2010.

[34] M. Castro, L.G. Fernandes, C. Pousa, J. Mehaut, and M.S. de Aguiar. Numa-ictm: A parallel
version of ictm exploiting memory placement strategies for numa machines. In Parallel
Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on, pages 1–8, May
2009.

[35] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-java: The new adven-
tures of old x10. In Proceedings of the 9th International Conference on Principles and Practice of
Programming in Java, PPPJ ’11, pages 51–61, New York, NY, USA, 2011. ACM.

[36] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra,
Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An object-oriented approach
to non-uniform cluster computing. In Proc. of the 20th Annual ACM SIGPLAN Conf. on Object-
oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, pages 519–538, New
York, NY, USA, 2005. ACM.

[37] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In Proc. of the 17th Annual
ACM Symp. on Parallelism in Algorithms and Architectures, SPAA ’05, pages 21–28, New York,
NY, USA, 2005. ACM.

[38] Quan Chen, Minyi Guo, and Haibing Guan. Laws: Locality-aware work-stealing for multi-
socket multi-core architectures. In Proceedings of the 28th ACM International Conference on
Supercomputing, ICS ’14, pages 3–12, New York, NY, USA, 2014. ACM.

[39] Quan Chen, Minyi Guo, and Zhiyi Huang. CATS: Cache aware task-stealing based on online
profiling in multi-socket multi-core architectures. In Proc. of the 26th ACM Intl. Conf. on
Supercomputing, ICS ’12, pages 163–172, New York, NY, USA, 2012. ACM.

[40] The GCC Developer Community. The GNU OpenMP Implementation. Boston, Mas-
sachusetts, 2006. http://gcc.gnu.org/onlinedocs/gcc-4.2.0/libgomp.pdf, ac-
cessed 10/2014.

[41] Jonathan Corbet. AutoNUMA: the other approach to NUMA scheduling. http://lwn.
net/Articles/488709/, accessed 11/2014.

[42] Jonathan Corbet. Transparent huge pages in 2.6.38, 2011. http://lwn.net/Articles/
423584/, accessed 09/2014.

[43] Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and Mark Horowitz. CPU DB:
Recording Microprocessor History. Commun. ACM, 55(4):55–63, April 2012.

[44] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud Lachaize,
Baptiste Lepers, Vivien Quema, and Mark Roth. Traffic management: A holistic approach to
memory placement on NUMA systems. In Proc. of the 18th Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’13, pages 381–394, New York, NY,
USA, 2013. ACM.

[45] Andi Drebes, Karine Heydemann, Antoniu Pop, Albert Cohen, and Nathalie Drach. Auto-
matic detection of performance anomalies in task-parallel programs. CoRR, abs/1405.2916,
2014.

[46] Andi Drebes, Antoniu Pop, Karine Heydemann, Albert Cohen, and Nathalie Drach. Topology-
aware and dependence-aware scheduling and memory allocation for task-parallel languages.
ACM Trans. Archit. Code Optim., 11(3):30:1–30:25, August 2014.

[47] Andi Drebes, Antoniu Pop, Karine Heydemann, Albert Cohen, and Nathalie Drach-Temam.
Aftermath: A graphical tool for performance analysis and debugging of fine-grained task-
parallel programs and run-time systems. In MULTIPROG ’14, 2014.

[48] Paul J. Drongowski. Instruction-Based Sampling: A New Performance Analysis Technique for AMD
Family 10h Processors. Advanced Micro Devices, November 2007.

239

http://gcc.gnu.org/onlinedocs/gcc-4.2.0/libgomp.pdf
http://lwn.net/Articles/488709/
http://lwn.net/Articles/488709/
http://lwn.net/Articles/423584/
http://lwn.net/Articles/423584/

BIBLIOGRAPHY

[49] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the Cilk-5
multithreaded language. In Proc. of the ACM SIGPLAN 1998 Conf. on Programming Language
Design and Implementation, PLDI ’98, pages 212–223, New York, NY, USA, 1998. ACM.

[50] B. Goglin and N. Furmento. Enabling high-performance memory migration for multithreaded
applications on linux. In Parallel Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on, pages 1–9, May 2009.

[51] Compaq Information Technologies Group. Compaq Fortran Parallel Processing Manual for Tru64
UNIX Systems, 2002.

[52] Mark D. Hill. What is scalability? SIGARCH Comput. Archit. News, 18(4):18–21, December
1990.

[53] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era. Computer, 41(7):33–38,
July 2008.

[54] Intel Corporation. Threading Building Blocks. http://gcc.gnu.org/onlinedocs/
gcc-4.9.0/gccint.pdf, accessed 10/2014.

[55] International Organization for Standardization. The ANSI C standard (C99). Technical Report
WG14 N1124, ISO/IEC, 1999.

[56] Ravishankar Iyer, Hujun Wang, and Laxmi Narayan Bhuyan. Design and analysis of static
memory management policies for cc-numa multiprocessors. J. Syst. Archit., 48(1-3):59–80,
September 2002.

[57] H. Jin, H. Jin, M. Frumkin, M. Frumkin, J. Yan, and J. Yan. The OpenMP implementation
of NAS parallel benchmarks and its performance. Technical report, NAS System Division,
NASA Ames Research Center, 1999.

[58] Andreas Kleen. A NUMA API for Linux, April 2005.

[59] Martin Kong, Antoniu Pop, Louis-Noël Pouchet, R. Govindarajan, Albert Cohen, and P. Sa-
dayappan. Compiler/runtime framework for dynamic dataflow parallelization of tiled
programs. ACM Trans. Archit. Code Optim., 11(4):61:1–61:30, January 2015.

[60] Jakub Kurzak, Piotr Luszczek, Asim YarKhan, Mathieu Faverge, Julien Langou, Henricus
Bouwmeester, and Jack Dongarra. Multithreading in the plasma library. In Sanguthevar
Rajasekaran, Lance Fiondella, Mohamed Ahmed, and Reda A. Ammar, editors, Multicore
Computing: Algorithms, Architectures, and Applications, Chapman & Hall/CRC Computer and
Information Science, pages 119–142, Boca Raton, Florida, USA, December 2013. CRC Press.

[61] Henrik Löf and Sverker Holmgren. Affinity-on-next-touch: Increasing the performance of
an industrial pde solver on a cc-numa system. In Proceedings of the 19th Annual International
Conference on Supercomputing, ICS ’05, pages 387–392, New York, NY, USA, 2005. ACM.

[62] Jaydeep Marathe, Vivek Thakkar, and Frank Mueller. Feedback-directed page placement for
ccnuma via hardware-generated memory traces. J. Parallel Distrib. Comput., 70(12):1204–1219,
December 2010.

[63] John D. McCalpin. Memory bandwidth and machine balance in current high performance
computers. IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newslet-
ter, pages 19–25, December 1995.

[64] Sally A. McKee. Reflections on the memory wall. In Proceedings of the 1st Conference on
Computing Frontiers, CF ’04, pages 162–, New York, NY, USA, 2004. ACM.

[65] Jason Merrill. GENERIC and GIMPLE: A New Tree Representation for Entire Functions. In
Proceedings of the 2003 GCC Developers’ Summit, pages 171–180, 2003. ftp://gcc.gnu.org/
pub/gcc/summit/2003/GENERIC%20and%20GIMPLE.pdf, accessed 09/2014.

[66] Eduardo Henrique Molina da Cruz, Marco Antonio Zanata Alves, Alexandre Carissimi,
Philippe Olivier Alexandre Navaux, Christiane Pousa Ribeiro, and Jean-Francois Mehaut.
Using memory access traces to map threads and data on hierarchical multi-core platforms.
In Proceedings of the 2011 IEEE International Symposium on Parallel and Distributed Processing

240

http://gcc.gnu.org/onlinedocs/gcc-4.9.0/gccint.pdf
http://gcc.gnu.org/onlinedocs/gcc-4.9.0/gccint.pdf
ftp://gcc.gnu.org/pub/gcc/summit/2003/GENERIC%20and%20GIMPLE.pdf
ftp://gcc.gnu.org/pub/gcc/summit/2003/GENERIC%20and%20GIMPLE.pdf

BIBLIOGRAPHY

Workshops and PhD Forum, IPDPSW ’11, pages 551–558, Washington, DC, USA, 2011. IEEE
Computer Society.

[67] Matthias S. Müller, Andreas Knüpfer, Matthias Jurenz, Matthias Lieber, Holger Brunst, Hart-
mut Mix, and Wolfgang E. Nagel. Developing scalable applications with vampir, vampirserver
and vampirtrace. In Proc. of ParCo ’07, volume 15 of Advances in Par. Comp., pages 637–644.
IOS Press, 2008.

[68] D. S. Nikolopoulos, E. Artiaga, E. Ayguadé, and J. Labarta. Exploiting memory affinity in
openmp through schedule reuse. SIGARCH Comput. Archit. News, 29(5):49–55, December
2001.

[69] Vincent Pillet, Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi Girona. Paraver: A tool to
visualize and analyze parallel code. Technical report, In WoTUG-18, 1995.

[70] Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesús Labarta. Hierarchical task-based
programming with StarSs. Intl. J. on High Performance Computing Architecture, 23(3):284–299,
2009.

[71] Antoniu Pop. Leveraging streaming for deterministic parallelization: an integrated language, compiler
and runtime approach. Theses, École Nationale Supérieure des Mines de Paris, September 2011.

[72] Antoniu Pop and Albert Cohen. A stream-computing extension to OpenMP. In Proceedings of
the 6th International Conference on High Performance and Embedded Architectures and Compilers,
HiPEAC ’11, pages 5–14, New York, NY, USA, 2011. ACM.

[73] Antoniu Pop and Albert Cohen. Control-Driven Data Flow. Rapport de recherche RR-8015,
INRIA, July 2012.

[74] Antoniu Pop and Albert Cohen. Expressiveness and Data-Flow Compilation of OpenMP
Streaming Programs. Rapport de recherche RR-8001, INRIA, June 2012.

[75] Louis-Noël Pouchet. PolyBench/C. http://web.cse.ohio-state.edu/~pouchet/
software/polybench/, accessed 08/2014.

[76] Christiane Pousa Ribeiro and Jean-François Méhaut. Minas: Memory Affinity Management
Framework. Research Report RR-7051, 2009.

[77] Christiane Pousa Ribeiro, Jean-Francois Mehaut, Alexandre Carissimi, Marcio Castro, and
Luiz Gustavo Fernandes. Memory affinity for hierarchical shared memory multiprocessors.
In Proceedings of the 2009 21st International Symposium on Computer Architecture and High
Performance Computing, SBAC-PAD ’09, pages 59–66, Washington, DC, USA, 2009. IEEE
Computer Society.

[78] Sameer S. Shende and Allen D. Malony. The tau parallel performance system. Int. J. High
Perform. Comput. Appl., 20(2):287–311, May 2006.

[79] Richard M. Stallman and the GCC Developer Community. GNU Compiler Collection Internals.
Boston, Massachusetts, 2010. http://gcc.gnu.org/onlinedocs/gcc-4.7.0/gccint.
pdf, accessed 10/2014.

[80] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting performance data
with PAPI-C. In Matthias S. Müller, Michael M. Resch, Alexander Schulz, and Wolfgang E.
Nagel, editors, Tools for High Performance Computing 2009, pages 157–173. Springer Berlin
Heidelberg, 2010.

[81] The Cairo Graphics Team. Cairo graphics. http://www.cairographics.org/. accessed
10/2013.

[82] The GTK+ Team. The GTK+ project. http://www.gtk.org/. accessed 10/2013.

[83] Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. Building portable thread
schedulers for hierarchical multiprocessors: The BubbleSched framework. In Anne-Marie
Kermarrec, Luc Bougé, and Thierry Priol, editors, Euro-Par 2007 Parallel Processing, volume
4641 of Lecture Notes in Computer Science, pages 42–51. Springer Berlin Heidelberg, 2007.

241

http://web.cse.ohio-state.edu/~pouchet/software/polybench/
http://web.cse.ohio-state.edu/~pouchet/software/polybench/
http://gcc.gnu.org/onlinedocs/gcc-4.7.0/gccint.pdf
http://gcc.gnu.org/onlinedocs/gcc-4.7.0/gccint.pdf
http://www.cairographics.org/
http://www.gtk.org/

BIBLIOGRAPHY

[84] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic storage
allocation: A survey and critical review. In Proceedings of the International Workshop on Memory
Management, IWMM ’95, pages 1–116, London, UK, UK, 1995. Springer-Verlag.

[85] Asim YarKhan, Jakub Kurzak, and Jack Dongarra. QUARK Users’ Guide – QUeueing And
Runtime for Kernels, 2011. http://ash2.icl.utk.edu/sites/ash2.icl.utk.edu/
files/publications/2011/icl-utk-454-2011.pdf, accessed 10/2014.

[86] Richard M. Yoo, Christopher J. Hughes, Changkyu Kim, Yen-Kuang Chen, and Christos
Kozyrakis. Locality-aware task management for unstructured parallelism: A quantitative
limit study. In Proc. of the 25th Annual ACM Symp. on Parallelism in Algorithms and Architectures,
SPAA ’13, pages 315–325, New York, NY, USA, 2013. ACM.

[87] Eddy Z. Zhang, Yunlian Jiang, and Xipeng Shen. Does cache sharing on modern cmp matter
to the performance of contemporary multithreaded programs? SIGPLAN Not., 45:203–212,
January 2010.

242

http://ash2.icl.utk.edu/sites/ash2.icl.utk.edu/files/publications/2011/icl-utk-454-2011.pdf
http://ash2.icl.utk.edu/sites/ash2.icl.utk.edu/files/publications/2011/icl-utk-454-2011.pdf

Index

Symbols

(BLOCK, BLOCK). .22
(BLOCK, CYCLIC) . 22
(CYCLIC, CYCLIC) . 22
* . 21, 22

A

Aff.-on-next-touch . 25–27
Affinity decision . 17
Affinity-on-next-touch.13, 14, 21, 25–28
Aggregate access cost . 17
AlphaServer GS320 . 23
Amdahl’s Law . 98
Attribute .35
AutoNUMA . 15

B

Balanced dependences 35
Balanced input dependences 35
Benchmark

Bitonic 75, 97, 103, 109, 110, 124–128,
146–148, 150, 151, 153, 156, 158, 159,
168, 172, 173, 175–177, 233

Blur-roberts . 103, 108, 120, 123–128, 146,
147, 150, 151, 153, 156, 173, 175, 176,
233

CG . 16
Cholesky 103, 112, 113, 116, 124,

125, 127, 128, 145, 173, 187, 193, 194,
196–200, 202, 204, 205, 218, 222, 223,
231, 233

FFT . 16
Input only . 143
Jacobi . . 103, 106, 108, 116, 120, 146, 147,

150, 172
Jacobi-1d 75, 106, 124–128, 146, 150, 151,

156, 160, 162, 173, 176, 177, 233
Jacobi-2d 106, 124–128, 146, 150, 151,

153, 156, 173, 176, 233
Jacobi-3d 75, 106, 124–128, 146, 150, 151,

153, 156, 173, 176, 233

K-means100, 103, 114–116, 124–128, 145,
146, 150, 151, 153, 156, 173, 176, 177,
185, 215–218, 226, 233

Seidel 75, 82, 103, 104, 106, 108, 120,
124–128, 146, 147, 150, 151, 153, 156,
162, 163, 172, 173, 176, 177, 215–221,
224, 233

Seidel-1d 82–85, 88, 102
Bitonic xix, 75, 97, 103, 109, 110, 124–128,

146–148, 150, 151, 153, 156, 158, 159,
168, 172, 173, 175–177, 233

Blades . 121
BLAS . 112, 125, 196, 198
BLOCK. xvii, 21–23
Block . 61
Blur filter . 108
Blur-roberts . xix, 103, 108, 120, 123–128, 146,

147, 150, 151, 153, 156, 173, 175, 176,
233

Bubbles . 20
BubbleSched . 20
Burst . 32
BZIP2 . 214

C

Cache bubble scheduler 20
Cache coherency . 9
Cache coherent architectures 9
Cache hierarchy. 8
Cache hits . 8
Cache memory . 8
Cache misses. .8
Cache pollution . 9, 235
Cache-coherent NUMA systems 10
Cairo Graphics Library 212
Carrefour 13–15, 25–27, 29
CATS . 24
CcNUMA. .10
CDDF . 31
CF root tasks . 24
CF subtree . 24
CF subtrees . 24

INDEX

CF task pool . 24
CG . 16
Cholesky xx, 103, 112, 113, 116, 124, 125, 127,

128, 145, 173, 187, 193, 194, 196–200,
202, 204, 205, 218, 222, 223, 231, 233

Chunk . 61
Cilk . 6, 23, 24
Clause . 35

Firstprivate. .39
Inout_reuse . 180
Input . 37
Output . 37
Peek . 37, 41
Sharing . 37
Task_name . 214

Clustering . 103
Compilation

Back end . 53
Generation of a data-flow frame 53
Gimplification . 53
Optimization passes 53
Outlining . 52
Syntax analysis . 52

Compulsory cache misses 9
Concurrent Collections . 6
Construct

Task . 35
Taskwait . 35, 38
Tick . 35, 37, 41

Control program . 31
Control-Driven Data Flow 31
CYCLIC . xvii, 21–23

D

Data cache . 9
Data distribution policy

(BLOCK, BLOCK) 22
(BLOCK, CYCLIC) 22
(CYCLIC, CYCLIC).22
* . 21, 22
BLOCK . 21–23
CYCLIC . 21–23

Data element . 78
Data location . 78
Data structure. .61
Data-flow frame . 45
Data-flow tasks . 31
Debian GNU/Linux . 251
Deferred allocation 157, 162
Dependence path . 35
Dependence paths . 35
Deque . 43
Difflatex . 251

Directive
MIGRATE_NEXT_TOUCH 22
MIGRATE_TO_OMP_THREAD 22
ON HOME . 22

Divide-and-conquer . 23
Divide-and-conquer algorithms 20
DSA . 77
Dynamic single assignment 31, 77
Dynamic task graph . 33

E

Emacs . 251
Evince . 251
Extended dynamic task graph. 34

F

FaceRec . 15
FFT . 16
FIFO queues . 31
First-touch . 15, 16
First-touch placement13, 14, 24, 59
Firstprivate . 39
Flyspell . 251
ForestGOMP 20, 21, 25–27, 29
Frame . 45
Frequency of last level cache misses 127

G

Gauß-Seidel . 104
Gaussian Elimination . 24
GCC . 125
GENERIC . 52
Ghostscript . 251
GIMPLE . 53
Gimplification . 53
Git . 251
GNU make . 252
Gnuplot . 252
GTK+ . 212
GZIP . 214

H

Habanero . 6
Hardware performance counter

CPU_IO_REQUESTS_TO_MEMORY_IO:
LOCAL_CPU_TO_LOCAL_MEM
144

CPU_IO_REQUESTS_TO_MEMORY_IO:
LOCAL_CPU_TO_REMOTE_MEM
144

L3_CACHE_MISSES:ALL 126
PAPI_L1_DCA . 126

244

INDEX

PAPI_L1_DCM . 126
PAPI_L2_DCA . 126
PAPI_L2_DCM . 126
PAPI_L3_TCA . 126
PAPI_L3_TCM . 126
PAPI_LD_INS . 126
PAPI_TOT_INS . 127
READ_REQUEST_TO_L3_CACHE:

ALL . 126
Hardware prefetching. 9
Heatmap . 212
Heatmap mode . 212
Heavy dependences . 35
Heuristic

Input. .230
Input only . . 137, 138, 145–148, 150, 151,

153, 159, 160, 167, 173, 185, 194, 230
Output only .137, 138, 143, 146–151, 153,

159, 160, 167, 230
Rnd . 150, 151
Weighted . . . 137, 138, 143, 146–151, 153,

156, 159, 160, 167, 194, 230
Hops . 10
Horizon . 32
Hunspell . 251
Hwloc . 20, 142, 196
Hyperthreading . 121
Hypothesis testing . 208

I

IBS . 14
Image processing . 108
Immediate allocation 157
Immediate splitting . 73
Inkscape . 252
Inout_reuse . 180
Input . 230
Input buffers .65
Input only . . 137, 138, 143, 145–148, 150, 151,

153, 159, 160, 167, 173, 185, 194, 230
Input only+taws . 143
Instruction cache . 9
Instruction-based sampling 14
Integer sorting . 103
Intel Math Kernel Library 198, 205, 232
Intel Math Kernel Library 11.1 Update 3 for

Linux . 198
Interleaved allocation . 60
Interleaving. .15

J

Jacobi . . . xix, 103, 106, 108, 116, 120, 146, 147,
150, 172

Jacobi-1d 75, 106, 124–128, 146, 150, 151, 153,
156, 160, 162, 173, 176, 177, 233

Jacobi-2d 106, 124–128, 146, 150, 151, 153,
156, 173, 176, 233

Jacobi-3d 75, 106, 124–128, 146, 150, 151, 153,
156, 173, 176, 233

K

K-means . xx, xxi, 100, 103, 114–116, 124–128,
145, 146, 150, 151, 153, 156, 173, 176,
177, 185, 215–218, 226, 233

L

LanguageTool . 251
LAPACK 112, 124, 125, 196, 198
LAWS . 20, 23–29
Lazy splitting . 73
Levels . 8
LibGOMP. .21
LibKOMP. 6
LibNUMA . 17, 119, 122
Libnuma. 59
Light dependences . 35
Linear algebra . 103
Local memory accesses 10
Locality of requests to main memory 144
Logical allocation . 58

M

MAi. 13, 15, 16, 25–27
Makeindex . 251
MaMI. .20
MApp . 16
Math Kernel Library 112, 125, 193, 196
Matplotlib . 252
Measurement interval 120
Memory Affinity Interface 15
Memory bubble scheduler 20
Memory hints. .20
Memory management unit 57
Memory pool . 50

Block . 61
Chunk . 61
Data structure . 61
Lazy splitting . 73
Per-worker memory pools 50
Refill . 50, 62

Memory protection . 58
Memory wall . 1, 8
Metis . 15
Migrate-on-next-touch 14
Minas 13, 16, 17, 25–27, 29

245

INDEX

MKL . 112, 125, 198, 199
MMU . 57
MPSC FIFO . 137
Multi-chip modules . 121
Multi-dimensional view 36

N

NAS Parallel Benchmarks 15–17
Nm . 214
Nodes . 10
Non-uniform memory access 10
Northbridge . 143
NUMA . 10
NUMA heatmap mode 213
NUMA maps . 213
NUMA mode . 213
Numactl . 121, 141
Numarch . 16
Numpy . 252

O

Off-line analysis . 208
Okular . 251
OpenMP . 31
OpenMP 4 . 29
OpenMP 4 . 29
OpenStream . 6, 29
Opteron . 121
Outlining. .37, 52
Output only .137, 138, 143, 146–151, 153, 159,

160, 167, 230
Output only+taws . 143

P

Page co-location . 14
Page interleaving . 14
Page migration . 15
Page replication . 14, 15
Page table . 58
Paging . 57
PAPI . 120, 126, 127, 210
Parallel Linear Algebra Software for Multi-

core Architectures 196
Paraprof . 226
Paraver . 226
PARSEC benchmark suite 15
Pdflatex . 251
Peek . 41
Per-node memory pools.73
Per-worker memory pools 50
Performance portability 5
Physical allocation . 58

PLASMA 6, 193, 196, 198, 199, 205, 232
Policy

(BLOCK, BLOCK) 22
(BLOCK, CYCLIC) 22
(CYCLIC, CYCLIC).22
* . 21, 22
BLOCK . 21–23
CYCLIC . 21–23

Polybench . 106
Pop . 43
POSIX thread . 43
Pragma . 35
Prefetching . 9
Private caches . 9
Productivity . 5
Python . 252

Q

QUARK . 6, 196

R

Read position . 31
Refill . 50
Remote memory accesses 10
Reuse input view . 181
Reuse output view . 181
Rnd . 143, 150, 151
Roberts Cross Operator 108
Run-time . 6
Run-time system . 6

S

Scalability. .5
Schedule reuse . 18, 25–27
Scheduler . 7
Scheduler reuse . 29
Scheduling entities . 20
Seidel . . xix, xx, 75, 82, 103, 104, 106, 108, 120,

124–128, 146, 147, 150, 151, 153, 156,
162, 163, 172, 173, 176, 177, 215–221,
224, 233

Seidel-1d xviii, xxiii, 82–85, 88, 102
Separate caches . 9
Shared caches . 9
Sharing clause . 37
Single entry software cache 43
Sliding window. 32
Socket local task pool . 24
Socket local tasks . 24
Software cache . 43
SPEC OMPM2001 . 17
SSA. 78

246

INDEX

StarSs . 6, 29
State mode . 212
Static single assignment 78
Stencil computations .103
STREAM . 21
Stream . 31

Declaration. .35
Read position . 31
Write position . 31

STREAM benchmark. 21
Streams . 31
Synctex . 251
Syntax analysis . 52
System call

mbind . 59, 75
move_pages 60, 68–71

T

Task body. .32
Task ownership . 134
Task sharing graph. 19
Task type . 213
Task type mode . 212
Tasks . 32
Taws. .143
Thread clustering . 14
Threading Building Blocks 6
Tick . 41
Timeline

Modes . 212
Timeline mode

Heatmap . 212
Heatmap mode . 212
NUMA heatmap 213
NUMA mode . 213
State mode . 212
Task type mode . 212

Timeline modes . 212
TLB . 60
Topology-aware work-stealing 133
Trace exploration . 208
Trace files . 208
Trace generation . 17
Trace-guided page placement 17
Translation lookaside buffer 60
Transparent huge page support 61
Twisted-100 . 21
Twisted-66 . 21
Twisted-STREAM . 21

Typemap . 212

U

Unbalanced dependences 35
Unbalanced input dependences 35
Unified caches . 8

V

Vampir . 226
Variadic view . 36
Version . 78
View

Declaration. .36
Matching. 33
Multi-dimensional view 36
Variadic view . 36

Virtual memory . 57
ViTE . 226

W

Weighted. . . .137, 138, 143, 146–151, 153, 156,
159, 160, 167, 194, 230

Weighted+taws . 143
Work-deque . 43, 44

Pop . 43
Work-function . 32, 37, 52
Work-pushing . 133, 137
Work-pushing heuristic

Input. .230
Input only . . 137, 138, 145–148, 150, 151,

153, 159, 160, 167, 173, 185, 194, 230
Output only .137, 138, 143, 146–151, 153,

159, 160, 167, 230
Rnd . 150, 151
Weighted . . . 137, 138, 143, 146–151, 153,

156, 159, 160, 167, 194, 230
Work-stealing . 43
Working set . 81
Write position . 31

X

X10 . 6
Xfce4-screenshooter . 252
XZ . 214

Z

Zero-page . 58

247

INDEX

248

A Personal Publications

[1] Andi Drebes, Antoniu Pop, Karine Heydemann, Albert Cohen, and Nathalie Drach.
Topology-aware and dependence-aware scheduling and memory allocation for task-
parallel languages. ACM Transactions on Architecture and Code Optimization, 11(3):30:1–
30:25, August 2014.

[2] Andi Drebes, Antoniu Pop, Karine Heydemann, Albert Cohen, and Nathalie Drach-
Temam. Aftermath: A graphical tool for performance analysis and debugging of
fine-grained task-parallel programs and run-time systems. In MULTIPROG ’14, 2014.

[3] Andi Drebes, Karine Heydemann, Antoniu Pop, Albert Cohen, and Nathalie Drach.
Automatic detection of performance anomalies in task-parallel programs. CoRR,
abs/1405.2916, 2014.

Chapter A: Personal Publications

250

B About this document

This document has been created exclusively using free software, mainly provided by the
DEBIAN GNU/LINUX distribution. The purpose of this section is to provide a list of these software
packages.

B.1 Typesetting and editing
Typesetting was done using LATEX (pdfTeX 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian)) with

the following packages:

– algorithm2e
– amsmath
– amssymb
– babel
– caption
– colortbl

– enumitem
– fancyhdr
– float
– fontenc
– geometry
– graphicx

– hyperref
– idxlayout
– ifthen
– inputenc
– listings
– makeidx

– microtype
– multicol
– multirow
– palatino
– siunitx
– subfig

– tikz
– titlesec
– xstring
– xcolor

Bibliographical information has been processed by BIBTEX and the index has been generated
using MAKEINDEX.

LATEX files have been edited using the EMACS editor. For basic spell checking we have used the
FLYSPELL mode using the HUNSPELL spell checker and for more advanced grammar checks we
have used the LANGUAGETOOL proofreading software.

A helpful tool for continuous proofreading is DIFFLATEX, which is able to highlight differences
between two versions of a LATEX file. All intermediate versions have been stored in a GIT repository.

Grayscale versions to check that figures remain readable when printed in black and white have
been generated using GHOSTSCRIPT.

For the visualization of the PDF files generated by PDFLATEX, we have used the OKULAR and
EVINCE document viewers. Occasionally, we have used the SYNCTEX tool, generating a file with
metadata that allows the user to click on a word in the document viewer to open an editor at the
corresponding line of the source file.

Chapter B: About this document

B.2 Figures and graphs
Most of the figures have been created with INKSCAPE. The screenshot of the main user interface

of Aftermath (Figure 10.3) has been created using XFCE4-SCREENSHOOTER. All other illustrations
of Aftermath were directly created using the PDF export function of Aftermath. Annotations on
these figures and small changes to improve the readability (e.g., thicker lines for graphs) have been
added using INKSCAPE.

The data for bar graphs and graphs showing lines has been extracted from the log files of the
experiments using custom PYTHON scripts. The actual graphs have been generated by passing
this data to functions of the MATPLOTLIB package. Statistical functions, e.g., to calculate means,
medians and the standard deviation have been provided by the NUMPY package.

The graph showing the linear regression on the frequency of branch mispredictions and the task
duration in Figure 10.16, as well as the linear regression itself have been created using GNUPLOT.

The build process for the PDF file is based on a Makefile using extensions of GNU MAKE.

252

	Introduction
	Objectives and contributions of this thesis
	Outline of this document

	Context and problem statement
	Parallel programming models for many-core architectures
	Task-based programming models
	The run-time system

	High performance parallel hardware architectures
	The cache hierarchy
	Non-uniform memory access
	Efficient exploitation of many-core architectures and NUMA

	Efficient mapping of parallelism to the hardware
	Related work
	Data placement
	Scheduling
	Combined scheduling and data placement
	Summary

	Summary and problem statement

	OpenStream
	Basic concepts
	Stream accesses using views
	Dynamic task graphs

	The syntax of OpenStream programs
	Declaring streams and stream references
	Declaring views
	Creating tasks
	The tick construct
	Barriers

	Examples
	Execution model
	Scheduling and work-stealing
	Data structures
	Dependence management
	Allocation of data structures
	Restrictions from the execution model

	Compilation of an OpenStream program
	Summary

	A NUMA-aware run-time and execution model
	Memory allocation and data placement by the operating system
	Logical and physical memory allocation
	Page placement
	Determining the location of data
	Implications of the size of pages

	The influence of first-touch placement and the page size on memory pooling
	Page placement during refills
	Placement at the first use of data structures
	Reuse of data structures

	Separation of frames and input buffers
	Avoiding the scattering of input data across multiple nodes
	Integration into the compiler

	NUMA-aware memory pools
	Determining the placement of blocks
	Integration into the life cycle and per-node memory pools

	Reducing the impact of per-node memory pools on performance
	Reducing the number of system calls for logical allocation

	Placement of persistent run-time structures
	Summary

	Dynamic single assignment
	Concepts of dynamic single assignment
	Terminology
	Principles of dynamic single assignment
	Dynamic single assignment on streams

	Obtaining accurate information on data accesses
	Implementing an algorithm using dynamic single assignment
	Identification of data elements, versions and appropriate partitioning
	Mapping of data elements to stream elements and definition of the interface of tasks generating new versions
	Definition of auxiliary tasks needed for initialization and termination
	Implementation of all tasks
	Parallelization of the control program

	Implications of dynamic single assignment on the control program
	Allocations of a sequential control program
	Allocations of a parallel control program
	Estimation of the memory footprint
	The order of task creations in a parallel control program

	Parallelizing the control program
	Rate of task creation
	Order of task creations
	Dynamic dependence patterns and termination detection
	Conditions for the parallelization of the control program
	Sketching deterministic parallel task creation

	Summary

	Experimental Setup
	Benchmarks
	Seidel
	Jacobi
	Blur-roberts
	Bitonic
	Cholesky
	K-means

	Baselines and measurement
	Synchronization using tokens
	Generic optimizations for load balancing across memory controllers
	Execution phases and measurement interval

	Hardware environment
	Opteron test platform
	SGI test platform
	Latency of memory accesses and NUMA factors

	Parametrization and tuning of the benchmarks
	Parametrization
	Compiler flags and manual optimizations

	Characterization of memory accesses
	Scalability of NUMA-agnostic shared memory benchmarks
	Summary

	Data-aware scheduling
	The influence of task activation on data locality
	The locality of read accesses
	The locality of write accesses
	The influence of the task graph on task ownership
	Conclusion

	Work-pushing
	Topology-aware work-stealing
	Experimental results
	Metrics for evaluation
	Results for work-pushing
	Results for topology-aware work-stealing

	Summary and conclusion

	Deferred allocation
	Influence of the allocation mechanism on data locality
	Influence of the control program
	Influence of work-stealing
	Influence of the creation of initial tasks

	Deferred allocation
	Principles of deferred allocation
	Modification of the run-time
	Modification of the compiler
	Deferred allocation and work-pushing

	Influence of deferred allocation on data locality
	Influence of the control program
	Influence of work-stealing
	Creation of initial tasks
	Reduction of the memory foot print

	Experimental results
	Memory footprint
	Performance

	Ongoing work: reduction of the memory footprint with the inout_reuse clause
	Summary

	Optimizing broadcasts
	Memory footprint and execution time of broadcasts
	Reducing the memory footprint and execution time
	Experimental evaluation
	Changes of the data layout improving cache hit rates
	Impact on the memory footprint and performance
	Comparison with state-of-the-art implementations of Cholesky Factorization
	Conclusion

	NUMA-aware broadcasts with on-demand copies
	Broadcasts with on-demand copies
	Experimental evaluation
	Conclusion

	Summary

	Performance analysis of task-parallel programs and run-times
	Requirements for trace-based performance analysis
	Trace exploration and hypothesis testing
	Trace visualization
	Control over the amount of detail
	Recording execution traces of task-parallel applications

	Aftermath
	Organization of the main user interface
	Trace format
	Symbol tables and annotations

	Debugging application performance
	Seidel: detecting contention on memory controllers
	K-means clustering: branch mispredictions

	Debugging run-time performance
	Deferred allocation and work-pushing
	Broadcast tables

	A perspective for the automation of performance analysis
	High-level analysis based on thresholds
	Correlating performance indicators with task durations
	Status of the implementation

	Related Work
	Summary and conclusions

	Conclusion and perspectives
	Summary of the thesis
	Contributions
	Key contributions
	Contributions that form the theoretical and technical basis for the key contributions
	Practical contributions

	Conclusions
	Future work and perspectives

	Personal Publications
	About this document
	Typesetting and editing
	Figures and graphs

